
Chapter XII • Standard Library Functions 215

XII
Standard Library

Functions

CHAPTER

Half the value of working with C comes from the standard library functions. Sure, it’s nice
to have that sexy for loop, and the similarity of arrays and pointers is convenient. When
the rubber meets the road, though, what counts is how convenient it is to work with
strings and files and such. Some programming languages do some parts of the task better;
others do other parts better. When you have to do all of it, though, there’s not much that
does it better than C.

A lot is missing from the standard library. There are no functions for graphics, or even
full-screen text manipulation. The signal mechanism (see FAQ XII.10) is pretty weak.
There’s absolutely no support for multitasking or for using anything but conventional
memory. That’s the point, though; the standard library provides functionality for all
programs, whether they run in a multitasking, multiple-window environment, or on a
dumb terminal, or in an expensive toaster. There are some de facto standards for the rest,
and you can get some from your compiler vendor or a third-party library. What is in the
standard library, though, is a very strong base to build on.

C Programming: Just the FAQs216

XII.1: Why should I use standard library functions instead of
writing my own?

Answer:
The standard library functions have three advantages: they work, they’re efficient, and they’re portable.

They work: Your compiler vendor probably got them right. More important, the vendor is likely to have done
a thorough test to prove they’re right, more thorough than you probably have time for. (There are expensive
test suites to make that job easier.)

They’re efficient: Good C programmers use the standard library functions a lot, and good compiler vendors
know that. There’s a competitive advantage for the vendor to provide a good implementation. When
competing compilers are compared for efficiency, a good compiler implementation can make all the
difference. The vendor has more motivation than you do, and probably more time, to produce a fast
implementation.

They’re portable: In a world where software requirements change hourly, the standard library functions do
the same thing, and mean the same thing, for every compiler, on every computer. They’re one of the few
things you, as a C programmer, can count on.

The funny thing is, one of the most standard pieces of information about the standard library is hard to find.
For every function, there’s one header file (or, rarely, two) that guarantees to give you that function’s
prototype. (You should always include the prototype for every function you call; see FAQ VIII.2.) What’s
funny? That header file might not be the file that actually contains the prototype. In some (sad!) cases, it’s
not even the header file recommended by the compiler manual. The same is true for macros, typedefs, and
global variables.

To get the “right” header file, look up the function in a copy of the ANSI/ISO C standard. If you don’t have
a copy of the standard handy, use Table XII.2, shown in the next FAQ.

Cross Reference:
VIII.2: Why should I prototype a function?

XII.2: What header files do I need in order to define the standard library functions I use?

XII.2: What header files do I need in order to define the
standard library functions I use?

Answer:
You need the ones that the ANSI/ISO standard says you should use. See Table XII.2.

The funny thing is, these are not necessarily the files that define what you’re looking for. Your compiler
guarantees that (for example) if you want the EDOM macro, you can get it by including <errno.h>. EDOM might

Chapter XII • Standard Library Functions 217

be defined in <errno.h>, or <errno.h> might just include something that defines it. Worse, the next version
of your compiler might define EDOM somewhere else.

Don’t look in the files for the definition and use that file. Use the file that’s supposed to define the symbol
you want. It’ll work.

A few names are defined in multiple files: NULL, size_t, and wchar_t. If you need a definition for one of these
names, use a file you need to include anyway, or pick one arbitrarily. (<stddef.h> is a reasonable choice; it’s
small, and it defines common macros and types.)

Table XII.2. Standard library functions’ header files.
Function/Macro Header File

abort stdlib.h

abs stdlib.h

acos math.h

asctime time.h

asin math.h

assert assert.h

atan math.h

atan2 math.h

atexit stdlib.h

atof stdlib.h

atoi stdlib.h

atol stdlib.h

bsearch stdlib.h

BUFSIZ stdio.h

calloc stdlib.h

ceil math.h

clearerr stdio.h

clock time.h

CLOCKS_PER_SEC time.h

clock_t time.h

cos math.h

cosh math.h

ctime time.h

difftime time.h

div stdlib.h

div_t stdlib.h

EDOM errno.h

continues

C Programming: Just the FAQs218

EOF stdio.h

ERANGE errno.h

errno errno.h

exit stdlib.h

EXIT_FAILURE stdlib.h

EXIT_SUCCESS stdlib.h

exp math.h

fabs math.h

fclose stdio.h

feof stdio.h

ferror stdio.h

fflush stdio.h

fgetc stdio.h

fgetpos stdio.h

fgets stdio.h

FILE stdio.h

FILENAME_MAX stdio.h

floor math.h

fmod math.h

fopen stdio.h

FOPEN_MAX stdio.h

fpos_t stdio.h

fprintf stdio.h

fputc stdio.h

fputs stdio.h

fread stdio.h

free stdlib.h

freopen stdio.h

frexp math.h

fscanf stdio.h

fseek stdio.h

fsetpos stdio.h

ftell stdio.h

fwrite stdio.h

getc stdio.h

Table XII.2. continued
Function/Macro Header File

Chapter XII • Standard Library Functions 219

getchar stdio.h

getenv stdlib.h

gets stdio.h

gmtime time.h

HUGE_VAL math.h

_IOFBF stdio.h

_IOLBF stdio.h

_IONBF stdio.h

isalnum ctype.h

isalpha ctype.h

iscntrl ctype.h

isdigit ctype.h

isgraph ctype.h

islower ctype.h

isprint ctype.h

ispunct ctype.h

isspace ctype.h

isupper ctype.h

isxdigit ctype.h

jmp_buf setjmp.h

labs stdlib.h

LC_ALL locale.h

LC_COLLATE locale.h

LC_CTYPE locale.h

LC_MONETARY locale.h

LC_NUMERIC locale.h

LC_TIME locale.h

struct lconv locale.h

ldexp math.h

ldiv stdlib.h

ldiv_t stdlib.h

localeconv locale.h

localtime time.h

log math.h

log10 math.h

longjmp setjmp.h

Function/Macro Header File

continues

C Programming: Just the FAQs220

L_tmpnam stdio.h

malloc stdlib.h

mblen stdlib.h

mbstowcs stdlib.h

mbtowc stdlib.h

MB_CUR_MAX stdlib.h

memchr string.h

memcmp string.h

memcpy string.h

memmove string.h

memset string.h

mktime time.h

modf math.h

NDEBUG assert.h

NULL locale.h, stddef.h, stdio.h, stdlib.h, string.h, time.h

offsetof stddef.h

perror stdio.h

pow math.h

printf stdio.h

ptrdiff_t stddef.h

putc stdio.h

putchar stdio.h

puts stdio.h

qsort stdlib.h

raise signal.h

rand stdlib.h

RAND_MAX stdlib.h

realloc stdlib.h

remove stdio.h

rename stdio.h

rewind stdio.h

scanf stdio.h

SEEK_CUR stdio.h

SEEK_END stdio.h

SEEK_SET stdio.h

Table XII.2. continued
Function/Macro Header File

Chapter XII • Standard Library Functions 221

setbuf stdio.h

setjmp setjmp.h

setlocale locale.h

setvbuf stdio.h

SIGABRT signal.h

SIGFPE signal.h

SIGILL signal.h

SIGINT signal.h

signal signal.h

SIGSEGV signal.h

SIGTERM signal.h

sig_atomic_t signal.h

SIG_DFL signal.h

SIG_ERR signal.h

SIG_IGN signal.h

sin math.h

sinh math.h

size_t stddef.h, stdlib.h, string.h, sprintf, stdio.h

sqrt math.h

srand stdlib.h

sscanf stdio.h

stderr stdio.h

stdin stdio.h

stdout stdio.h

strcat string.h

strchr string.h

strcmp string.h

strcoll string.h

strcpy string.h

strcspn string.h

strerror string.h

strftime time.h

strlen string.h

strncat string.h

strncmp string.h

strncpy string.h

Function/Macro Header File

continues

C Programming: Just the FAQs222

strpbrk string.h

strrchr string.h

strspn string.h

strstr string.h

strtod stdlib.h

strtok string.h

strtol stdlib.h

strtoul stdlib.h

strxfrm string.h

system stdlib.h

tan math.h

tanh math.h

time time.h

time_t time.h

struct tm time.h

tmpfile stdio.h

tmpnam stdio.h

TMP_MAX stdio.h

tolower ctype.h

toupper ctype.h

ungetc stdio.h

va_arg stdarg.h

va_end stdarg.h

va_list stdarg.h

va_start stdarg.h

vfprintf stdio.h

vprintf stdio.h

vsprintf stdio.h

wchar_t stddef.h, stdlib.h

wcstombs stdlib.h

wctomb stdlib.h

Table XII.2. continued
Function/Macro Header File

Chapter XII • Standard Library Functions 223

Cross Reference:
V.12: What is the difference between #include <file> and #include “file”?

XII.1: Why should I use standard library functions instead of writing my own?

XII.3: How can I write functions that take a variable number of
arguments?

Answer:
Use <stdarg.h>. This defines some macros that let your program deal with variable numbers of arguments.

NOTE
The “variable arguments” functions used to be in a header file known as <varargs.h> or some such.
Your compiler might or might not still have a file with that name; even if it does have the file now,
it might not have it in the next release. Use <stdarg.h>.

There’s no portable way for a C function, with no constraints on what it might be passed, to know how many
arguments it might have gotten or what their types are. If a C function doesn’t take a fixed number of
arguments (of fixed types), it needs some convention for what the arguments are. For example, the first
argument to printf is a string, which indicates what the remaining arguments are:

printf(“Hello, world!\n”); /* no more arguments */
printf(“%s\n”, “Hello, world!”); /* one more string argument */
printf(“%s, %s\n”, “Hello”, “world!”); /* two more string arguments */
printf(“%s, %d\n”, “Hello”, 42); /* one string, one int */

Listing XII.3 shows a simple printf-like function. The first argument is the format; from the format string,
the number and types of the remaining arguments can be determined. As with the real printf, if the format
doesn’t match the rest of the arguments, the result is undefined. There’s no telling what your program will
do then (but probably something bad).

Listing XII.3. A simple printf-like function.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>

static char *
int2str(int n)
{
 int minus = (n < 0);

continues

C Programming: Just the FAQs224

 static char buf[32];
 char *p = &buf[31];

 if (minus)
 n = -n;
 *p = ‘\0’;
 do {
 *--p = ‘0’ + n % 10;
 n /= 10;
 } while (n > 0);
 if (minus)
 *--p = ‘-’;
 return p;
}

/*
 * This is a simple printf-like function that handles only
 * the format specifiers %%, %s, and %d.
 */
void
simplePrintf(const char *format, ...)
{
 va_list ap; /* ap is our argument pointer. */
 int i;
 char *s;

 /*
 * Initialize ap to start with the argument
 * after “format”
 */
 va_start(ap, format);
 for (; *format; format++) {
 if (*format != ‘%’) {
 putchar(*format);
 continue;
 }
 switch (*++format) {
 case ‘s’:
 /* Get next argument (a char*) */
 s = va_arg(ap, char *);
 fputs(s, stdout);
 break;
 case ‘d’:
 /* Get next argument (an int) */
 i = va_arg(ap, int);
 s = int2str(i);
 fputs(s, stdout);
 break;
 case ‘\0’:
 format--;
 break;
 default:
 putchar(*format);
 break;
 }

Listing XII.3. continued

Chapter XII • Standard Library Functions 225

 }
 /* Clean up varying arguments before returning */
 va_end(ap);
}

void
main()
{
 simplePrintf(“The %s tax rate is %d%%.\n”,
 “sales”, 6);
}

Cross Reference:
XII.2: What header files do I need in order to define the standard library functions I use?

XII.4: What is the difference between a free-standing and a
hosted environment?

Answer:
Not all C programmers write database management systems and word processors. Some write code for
embedded systems, such as anti-lock braking systems and intelligent toasters. Embedded systems don’t
necessarily have any sort of file system, or much of an operating system at all. The ANSI/ISO standard calls
these “free-standing” systems, and it doesn’t require them to provide anything except the language itself. The
alternative is a program running on a PC or a mainframe or something in-between; that’s a “hosted”
environment.

Even people developing for free-standing environments should pay attention to the standard library. For one
thing, if a free-standing environment provides some functionality (such as a square root function), it’s likely
to provide it in a way that’s compatible with the standard. (Reinventing the square root is like reinventing
the square wheel; what’s the point?) Beyond that, embedded programs are often tested on a PC before they’re
downloaded to a toaster (or whatever). Using the standard functions will increase the amount of code that
can be identical in both the test and the real environments.

Cross Reference:
XII.1: Why should I use standard library functions instead of writing my own?

Chapter XV: Portability

C Programming: Just the FAQs226

XII.5: What standard functions are available to
manipulate strings?

Answer:
Short answer: the functions in <string.h>.

C doesn’t have a built-in string type. Instead, C programs use char arrays, terminated by the NUL (‘\0’)
character.

C programs (and C programmers) are responsible for ensuring that the arrays are big enough to hold all that
will be put in them. There are three approaches:

◆ Set aside a lot of room, assume that it will be big enough, and don’t worry what happens if it’s not
big enough (efficient, but this method can cause big problems if there’s not enough room).

◆ Always allocate and reallocate the necessary amount of room (not too inefficient if done with realloc;
this method can take lots of code and lots of runtime).

◆ Set aside what should be enough room, and stop before going beyond it (efficient and safe, but you
might lose data).

NOTE
C++ is moving toward a fourth approach: leave it all behind and define a string type. For various
reasons, that’s a lot easier to do in C++ than in C. Even in C++, it’s turning out to be rather involved.
Luckily, after a standard C++ string type has been defined, even if it turns out to be hard to
implement, it should be very easy for C++ programmers to use.

There are two sets of functions for C string programming. One set (strcpy, strcat, and so on) works with
the first and second approaches. This set copies or uses as much as it’s asked to—and there had better be room
for it all, or the program might be buggy. Those are the functions most C programmers use. The other set
(strncpy, strncat, and so on) takes the third approach. This set needs to know how much room there is,
and it never goes beyond that, ignoring everything that doesn’t fit.

The “n” (third) argument means different things to these two functions:

To strncpy, it means there is room for only “n” characters, including any NUL character at the end. strncpy
copies exactly “n” characters. If the second argument doesn’t have that many, strncpy copies extra NUL
characters. If the second argument has more characters than that, strncpy stops before it copies any NUL
character. That means, when using strncpy, you should always put a NUL character at the end of the string
yourself; don’t count on strncpy to do it for you.

To strncat, it means to copy up to “n” characters, plus a NUL character if necessary. Because what you really
know is how many characters the destination can store, you usually need to use strlen to calculate how many
characters you can copy.

The difference between strncpy and strncat is “historical.” (That’s a technical term meaning “It made sense
to somebody, once, and it might be the right way to do things, but it’s not obvious why right now.”)

Listing XII.5a shows a short program that uses strncpy and strncat.

Chapter XII • Standard Library Functions 227

NOTE
Get to know the “string-n” functions. Using them is harder but leads to more robust, less buggy
software.

If you’re feeling brave, try rewriting the program in Listing XII.5a with strcpy and strcat, and
run it with big enough arguments that the buffer overflows. What happens? Does your computer
hang? Do you get a General Protection Exception or a core dump? See FAQ VII.24 for a discussion.

Listing XII.5a. An example of the “string-n” functions.
#include <stdio.h>
#include <string.h>

/*
Normally, a constant like MAXBUF would be very large, to
help ensure that the buffer doesn’t overflow. Here, it’s very
small, to show how the “string-n” functions prevent it from
ever overflowing.
*/

#define MAXBUF 16

int
main(int argc, char** argv)
{
 char buf[MAXBUF];
 int i;

 buf[MAXBUF - 1] = ‘\0’;

 strncpy(buf, argv[0], MAXBUF-1);
 for (i = 1; i < argc; ++i) {
 strncat(buf, “ “,
 MAXBUF - 1 - strlen(buf));
 strncat(buf, argv[i],
 MAXBUF - 1 - strlen(buf));
 }

 puts(buf);
 return 0;

}

NOTE
Many of the string functions take at least two string arguments. It’s convenient to refer to them
as “the left argument” and “the right argument,” rather than “the first argument” and “the second
argument,” for describing which one is which.

C Programming: Just the FAQs228

strcpy and strncpy copy a string from one array to another. The value on the right is copied to the value
on the left; think of the order as being the same as that for assignment.

strcat and strncat “concatenate” one string onto the end of another. For example, if a1 is an array that holds
“dog” and a2 is an array that holds “wood”, after calling strcat(a1, a2), a1 would hold “dogwood”.

strcmp and strncmp compare two strings. The return value is negative if the left argument is less than the
right, zero if they’re the same, and positive if the left argument is greater than the right. There are two
common idioms for equality and inequality:

if (strcmp(s1, s2)) {
 /* s1 != s2 */
}

and

if (! strcmp(s1, s2)) {
 /* s1 == s2 */
}

This code is not incredibly readable, perhaps, but it’s perfectly valid C code and quite common; learn to
recognize it. If you need to take into account the current locale when comparing strings, use strcoll.

A number of functions search in a string. (In all cases, it’s the “left” or first argument being searched in.)
strchr and strrchr look for (respectively) the first and last occurrence of a character in a string. (memchr and
memrchr are the closest functions to the “n” equivalents strchr and strrchr.) strspn, strcspn (the “c” stands
for “complement”), and strpbrk look for substrings consisting of certain characters or separated by certain
characters:

n = strspn(“Iowa”, “AEIOUaeiou”);
/* n = 2; “Iowa” starts with 2 vowels */

n = strcspn(“Hello world”, “ \t”);
/* n = 5; white space after 5 characters */
p = strbrk(“Hello world”, “ \t”);
/* p points to blank */

strstr looks for one string in another:

p = strstr(“Hello world”, “or”);
/* p points to the second “o” */

strtok breaks a string into tokens, which are separated by characters given in the second argument. strtok
is “destructive”; it sticks NUL characters in the original string. (If the original string should be changed, it
should be copied, and the copy should be passed to strtok.) Also, strtok is not “reentrant”; it can’t be called
from a signal-handling function, because it “remembers” some of its arguments between calls. strtok is an
odd function, but very useful for pulling apart data separated by commas or white space. Listing XII.5b shows
a simple program that uses strtok to break up the words in a sentence.

Listing XII.5b. An example of using strtok.
#include <stdio.h>
#include <string.h>

static char buf[] = “Now is the time for all good men ...”;

Chapter XII • Standard Library Functions 229

int
main()
{
 char* p;
 p = strtok(buf, “ “);
 while (p) {
 printf(“%s\n”, p);
 p = strtok(NULL, “ “);
 }
 return 0;
}

Cross Reference:
IV.18: How can I read and write comma-delimited text?

Chapter VI: Working with Strings

VII.23: What is the difference between NULL and NUL?

IX .9: What is the difference between a string and an array?

XII.8: What is a “locale”?

XII.10: What’s a signal? What do I use signals for?

XII.6: What standard functions are available to
manipulate memory?

Answer:
Several functions copy, compare, and fill arbitrary memory. These functions take void* (pointers to nothing
in particular); they work with pointers to anything.

There are two functions (roughly like strncpy) for copying information. One, memmove, copies memory from
one place to another, even if the two places overlap. Why is that important? Say you have a buffer with
some data already in it, and you want to move it “to the right” to make room at the beginning of the buffer.
Listing XII.6 shows a program that tries to perform this action but doesn’t do it right.

Listing XII.6. A program that tries to move data but trashes it instead.
static char buf[] =
 {‘R’, ‘I’, ‘G’, ‘H’, ‘T’, ‘\0’, ‘-’, ‘-’, ‘-’};
int
main()
{
 int i;
 for (i=0; i<6; ++i) {
 buf[i+3] = buf[i];
 }
}

C Programming: Just the FAQs230

The idea was to change buf from being “RIGHT” to being “RIGRIGHT” so that other data could be put in the
first three bytes. Unfortunately, that’s not what happened. If you unroll the for loop (or run the program
with a debugger to see what it’s doing), you’ll see that the program really acted like this:

buf[3] = buf[0];
buf[4] = buf[1];
buf[5] = buf[2];
buf[6] = buf[3];
buf[7] = buf[4];
buf[8] = buf[5];
buf[9] = buf[6];

The effect on the data is shown in Figure XII.6a (the newly copied data is shown in bold). The program
trashed some of the data it was supposed to move!

Figure XII.6a.

The wrong way to “move”
overlapping data.

R I G H T \0 – – –
R I G R T \0 – – –
R I G R I \0 – – –
R I G R I G – – –
R I G R I G R – –
R I G R I G R I –
R I G R I G R I G

For moving or copying data that overlaps, there’s a simple rule. If the source and destination areas overlap,
and the source is before the destination, start at the end of the source and work backward to the beginning.
If the source is after the destination, start at the beginning of the source and work to the end. See Figure
XII.6b.

Figure XII.6b.

The right ways to “move”
overlapping data.

R I G H T \0 – – –
R I G H T \0 – – \0
R I G H T \0 – T \0
R I G H T \0 H T \0
R I G H T G H T \0
R I G H I G H T \0
R I G R I G H T \0

< < < L E F T \0
L < < L E F T \0
L E < L E F T \0
L E F L E F T \0
L E F T E F T \0
L E F T \0 F T \0

Chapter XII • Standard Library Functions 231

The purpose for explaining all that is to tell you this: the memmove function knows that rule. It is guaranteed
to copy data, even overlapping data, the right way. If you’re copying or moving data and you’re not sure
whether the source and destination overlap, use memmove. If you’re sure they don’t overlap, memcpy might be
marginally faster.

The memcmp function is like the strncmp function, except that it doesn’t stop at bytes with NUL characters
(‘\0’). It shouldn’t be used to compare struct values, though. Say that you have the following structure:

struct foo {
 short s;
 long l;
}

And say that on the system your program will run on, a short is two bytes (16 bits) long, and a long is four
bytes (32 bits) long. On a 32-bit machine, many compilers put two bytes of “junk” between s and l so that
l starts on a word boundary. If your program runs on a little-endian machine (the least significant byte is
stored at the lowest address), the structure might be laid out like this:

struct foo byte[0] least significant byte of s

struct foo byte[1] most significant byte of s

struct foo byte[2] junk (make l start on a long boundary)

struct foo byte[3] junk (make l start on a long boundary)

struct foo byte[4] least significant byte of l

struct foo byte[5] second least significant byte of lstruct

struct foo byte[6] second most significant byte of l

struct foo byte[7] most significant byte of l

Two struct foos with the same s and l values might not compare equal with memcmp, because the “junk”
might be different.

memchr is like strchr, but it looks for a character anywhere in a specified part of memory; it won’t stop at
the first NUL byte.

memset is useful even for nonparanoid C programmers. It copies some byte into a specified part of memory.
One common use is to initialize some structure to all zero bytes. If p is a pointer to a struct, then

memset(p, ‘\0’, sizeof *p);

overwrites the thing p points to with zero (NUL or ‘\0’) bytes. (This also overwrites any “junk” used to get
members on word boundaries, but that’s OK; it’s junk, nobody cares what you write there.)

Cross Reference:
VI.1: What is the difference between a string copy (strcpy) and a memory copy (memcpy)? When
should each be used?

VI.3: How can I remove the leading spaces from a string?

IX.9: What is the difference between a string and an array?

C Programming: Just the FAQs232

XII.7: How do I determine whether a character is numeric,
alphabetic, and so on?

Answer:
The header file ctype.h defines various functions for determining what class a character belongs to. These
consist of the following functions:

Function Character Class Returns Nonzero for Characters

isdigit() Decimal digits 0–9

isxdigit() Hexadecimal digits 0–9, a–f, or A–F

isalnum() Alphanumerics 0–9, a–z, or A–Z

isalpha() Alphabetics a–z or A–Z

islower() Lowercase alphabetics a–z

isupper() Uppercase alphabetics A–Z

isspace() Whitespace Space, tab, vertical tab, newline, form
feed, or carriage return

isgraph() Nonblank characters Any character that appears nonblank
when printed (ASCII 0x21 through 0x7E)

isprint() Printable characters All the isgraph() characters, plus space

ispunct() Punctuation Any character in isgraph() that is not in
isalnum()

iscntrl() Control characters Any character not in isprint() (ASCII
0x00 through 0x1F plus 0x7F)

There are three very good reasons for calling these macros instead of writing your own tests for character
classes. They are pretty much the same reasons for using standard library functions in the first place. First,
these macros are fast. Because they are generally implemented as a table lookup with some bit-masking magic,
even a relatively complicated test can be performed much faster than an actual comparison of the value of
the character.

Second, these macros are correct. It’s all too easy to make an error in logic or typing and include a wrong
character (or exclude a right one) from a test.

Third, these macros are portable. Believe it or not, not everyone uses the same ASCII character set with PC
extensions. You might not care today, but when you discover that your next computer uses Unicode rather
than ASCII, you’ll be glad you wrote code that didn’t assume the values of characters in the character set.

The header file ctype.h also defines two functions to convert characters between upper- and lowercase
alphabetics. These are toupper() and tolower(). The behavior of toupper() and tolower() is undefined
if their arguments are not lower- and uppercase alphabetic characters, respectively, so you must remember
to check using islower() and isupper() before calling toupper() and tolower().

Chapter XII • Standard Library Functions 233

Cross Reference:
V.1: What is a macro, and how do you use it?

VI.2: How can I remove the trailing spaces from a string?

VI.3: How can I remove the leading spaces from a string?

XX.18: How do you tell whether a character is a letter of the alphabet?

XX.19: How do you tell whether a character is a number?

XII.8: What is a “locale”?
Answer:

A locale is a description of certain conventions your program might be expected to follow under certain
circumstances. It’s mostly helpful to internationalize your program.

If you were going to print an amount of money, would you always use a dollar sign? Not if your program
was going to run in the United Kingdom; there, you’d use a pound sign. In some countries, the currency
symbol goes before the number; in some, it goes after. Where does the sign go for a negative number? How
about the decimal point? A number that would be printed 1,234.56 in the United States should appear as
1.234,56 in some other countries. Same value, different convention. How are times and dates displayed? The
only short answer is, differently. These are some of the technical reasons why some programmers whose
programs have to run all over the world have so many headaches.

Good news: Some of the differences have been standardized. C compilers support different “locales,”
different conventions for how a program acts in different places. For example, the strcoll (string collate)
function is like the simpler strcmp, but it reflects how different countries and languages sort and order
(collate) string values. The setlocale and localeconv functions provide this support.

Bad news: There’s no standardized list of interesting locales. The only one your compiler is guaranteed to
support is the “C” locale, which is a generic, American English convention that works best with ASCII
characters between 32 and 127. Even so, if you need to get code that looks right, no matter where around
the world it will run, thinking in terms of locales is a good first step. (Getting several locales your compiler
supports, or getting your compiler to accept locales you define, is a good second step.)

Cross Reference:
None.

XII.9: Is there a way to jump out of a function or functions?
Answer:

The standard library functions setjmp() and longjmp() are used to provide a goto that can jump out of a
function or functions, in the rare cases in which this action is useful. To correctly use setjmp() and
longjmp(), you must apply several conditions.

C Programming: Just the FAQs234

You must #include the header file setjmp.h. This file provides the prototypes for setjmp() and longjmp(),
and it defines the type jmp_buf. You need a variable of type jmp_buf to pass as an argument to both setjmp()
and longjmp(). This variable will contain the information needed to make the jump occur.

You must call setjmp() to initialize the jmp_buf variable. If setjmp() returns 0, you have just initialized the
jmp_buf. If setjmp() returns anything else, your program just jumped to that point via a call to longjmp().
In that case, the return value is whatever your program passed to longjmp().

Conceptually, longjmp() works as if when it is called, the currently executing function returns. Then the
function that called it returns, and so on, until the function containing the call to setjmp() is executing.
Then execution jumps to where setjmp() was called from, and execution continues from the return of
setjmp(), but with the return value of setjmp() set to whatever argument was passed to longjmp().

In other words, if function f() calls setjmp() and later calls function g(), and function g() calls function
h(), which calls longjmp(), the program behaves as if h() returned immediately, then g() returned
immediately, then f() executed a goto back to the setjmp() call.

What this means is that for a call to longjmp() to work properly, the program must already have called
setjmp() and must not have returned from the function that called setjmp(). If these conditions are not
fulfilled, the operation of longjmp() is undefined (meaning your program will probably crash). The program
in Listing XII.9 illustrates the use of setjmp() and longjmp(). It is obviously contrived, because it would be
simpler to write this program without using setjmp() and longjmp(). In general, when you are tempted to
use setjmp() and longjmp(), try to find a way to write the program without them, because they are easy to
misuse and can make a program difficult to read and maintain.

Listing XII.9. An example of using setjmp() and longjmp().
#include <setjmp.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define RETRY_PROCESS 1
#define QUIT_PROCESS 2

jmp_buf env;

int nitems;

int
procItem()
{
 char buf[256];
 if (gets(buf) && strcmp(buf, “done”)) {
 if (strcmp(buf, “quit”) == 0)
 longjmp(env, QUIT_PROCESS);
 if (strcmp(buf, “restart”) == 0)
 longjmp(env, RETRY_PROCESS);
 nitems++;
 return 1;
 }
 return 0;
}

void

Chapter XII • Standard Library Functions 235

process()
{
 printf(“Enter items, followed by ‘done’.\n”);
 printf(“At any time, you can type ‘quit’ to exit\n”);
 printf(“or ‘restart’ to start over again\n”);
 nitems = 0;
 while (procItem())
 ;
}

void
main()
{
 for (; ;) {
 switch (setjmp(env)) {
 case 0:
 case RETRY_PROCESS:
 process();
 printf(“You typed in %d items.\n”,
 nitems);
 break;
 case QUIT_PROCESS:
 default:
 exit(0);
 }
 }
}

Cross Reference:
I.8: What is the difference between goto and longjmp() and setjmp()?

VII.20: What is the stack?

XII.10: What’s a signal? What do I use signals for?
Answer:

A signal is an exceptional condition that occurs during the execution of your program. It might be the result
of an error in your program, such as a reference to an illegal address in memory; or an error in your program’s
data, such as a floating-point divided by 0; or an outside event, such as the user’s pressing Ctrl-Break.

The standard library function signal() enables you to specify what action is to be taken on one of these
exceptional conditions (a function that performs that action is called a “signal handler”). The prototype for
signal() is

#include <signal.h>
void (*signal(int num, void (*func)(int)))(int);

which is just about the most complicated declaration you’ll see in the C standard library. It is easier to
understand if you define a typedef first. The type sigHandler_t, shown next, is a pointer to a function that
takes an int as its argument and returns a void:

typedef void (*sigHandler_t)(int);
sigHandler_t signal(int num, sigHandler_t func);

C Programming: Just the FAQs236

signal() is a function that takes an int and a sigHandler_t as its two arguments, and returns a sigHandler_t
as its return value. The function passed in as the func argument will be the new signal handler for the
exceptional condition numbered num. The return value is the previous signal handler for signal num. This value
can be used to restore the previous behavior of a program, after temporarily setting a signal handler. The
possible values for num are system dependent and are listed in signal.h. The possible values for func are any
function in your program, or one of the two specially defined values SIG_DFL or SIG_IGN. The SIG_DFL value
refers to the system’s default action, which is usually to halt the program. SIG_IGN means that the signal is
ignored.

The following line of code, when executed, causes the program containing it to ignore Ctrl-Break keystrokes
unless the signal is changed again. Although the signal numbers are system dependent, the signal number
SIGINT is normally used to refer to an attempt by the user to interrupt the program’s execution (Ctrl-C or
Ctrl-Break in DOS):

signal(SIGINT, SIG_IGN);

Cross Reference:
XX.16: How do you disable Ctrl-Break?

XII.11: Why shouldn’t I start variable names with underscores?
Answer:

Identifier names beginning with two underscores or an underscore followed by a capital letter are reserved
for use by the compiler or standard library functions wherever they appear. In addition, all identifier names
beginning with an underscore followed by anything are reserved when they appear in file scope (when they
are not local to a function).

If you use a reserved identifier for a variable name, the results are undefined (your program might not
compile, or it might compile but crash). Even if you are lucky enough to pick an identifier that is not currently
used by your compiler or library, remember that these identifiers are reserved for possible use later. Thus,
it’s best to avoid using an underscore at the beginning of variable and function names.

Cross Reference:
XIX.1: Should the underscore be used in variable names?

XII.12: Why does my compiler provide two versions
of malloc()?

Answer:
By including stdlib.h, you can use malloc() and free() in your code. This function is put in your code by
the compiler from the standard C library. Some compilers have a separate library that you can ask the

Chapter XII • Standard Library Functions 237

compiler to use (by specifying a flag such as -lmalloc on the command line) to replace the standard library’s
versions of malloc() and free() with a different version.

These alternative versions of malloc() and free() do the same thing as the standard ones, but they are
supposedly implemented to provide better performance at the cost of being less forgiving about memory
allocation errors. I have never had a reason to use these alternative routines in 15 years of C programming.
But in answering this FAQ, I wrote a simple test program to heavily exercise malloc() and free() and
compiled it with a well-known commercial C compiler both with and without the malloc library. I couldn’t
detect any significant difference in performance, and because both versions of the routines were the same size,
I suspect that this particular vendor used the same code for both implementations. For this reason, I will not
name the compiler vendor.

The moral of the story is that you probably don’t need to bother with the other version of malloc() and
probably shouldn’t count on it for performance improvements. If profiling shows that your program spends
a large percentage of its time in malloc() and free(), and you can’t fix the problem by changing the
algorithm, you might be able to improve performance by writing your own “pool” allocator.

Programs that call malloc() and free() a lot are often allocating and freeing the same type of data, which
has a fixed size. When you know the size of the data to be allocated and freed, a pool allocator can be much
faster than malloc() and free(). A pool allocator works by calling malloc() to allocate many structures of
the same size all at once, then hands them out one at a time. It typically never calls free(), and the memory
stays reserved for use by the pool allocator until the program exits. Listing XII.12 shows a pool allocator for
the hypothetical type struct foo.

Listing XII.12. An example of a pool allocator.
#include <stdio.h>

/* declaration of hypothetical structure “foo” */
struct foo {
 int dummy1;
 char dummy2;
 long dummy3;
};

/* start of code for foo pool allocator */

#include <stdlib.h>

/* number of foos to malloc() at a time */
#define NFOOS 64

/*
 * A union is used to provide a linked list that
 * can be overlaid on unused foos.
 */
union foo_u {
 union foo_u *next;
 struct foo f;
};

static union foo_u *free_list;

continues

C Programming: Just the FAQs238

struct foo *
alloc_foo()
{
 struct foo *ret = 0;
 if (!free_list) {
 int i;
 free_list = (union foo_u *) malloc(NFOOS
 * sizeof(union foo_u));
 if (free_list) {
 for (i = 0; i < NFOOS - 1; i++)
 free_list[i].next =
 &free_list[i + 1];
 free_list[NFOOS - 1].next = NULL;
 }
 }
 if (free_list) {
 ret = &free_list->f;
 free_list = free_list->next;
 }
 return ret;
}

void
free_foo(struct foo *fp)
{
 union foo_u *up = (union foo_u *) fp;
 up->next = free_list;
 free_list = up;
}

int
main(int argc, char **argv)
{
 int i;
 int n;
 struct foo **a;

 if (argc < 2) {
 fprintf(stderr, “usage: %s f\n”, argv[0]);
 fprintf(stderr, “where f is the number of”);
 fprintf(stderr, “ ‘foo’s to allocate\n”);
 exit(1);
 }
 i = atoi(argv[1]);
 a = (struct foo **) malloc(sizeof(struct foo *) * i);
 for (n = 0; n < i; n++)
 a[n] = alloc_foo();
 for (n = 0; n < i; n++)
 free_foo(a[n]);
 return 0;
}

I compiled and ran this program with an argument of 300000 and compared the results to a similar program
that replaced calls to alloc_foo() and free_foo() with calls to malloc() and free(). The CPU time used

Listing XII.12. continued

Chapter XII • Standard Library Functions 239

by the version of the program using the pool allocator was 0.46 seconds. The version of the program that
used malloc() took 0.92 seconds.

Note that you should use a pool allocator only as a last resort. It might improve speed, but it can be very
wasteful of memory. It also can lead to subtle memory allocation errors if you’re not careful to return memory
to the pool from which it came instead of calling free().

Cross Reference:
VII.21: What is the heap?

VII.26: How does free() know how much memory to release?

XII.13: What math functions are available for integers? For
floating point?

Answer:
The operations +, -, *, and / (addition, subtraction, multiplication, and division) are available for both
integer and floating-point arithmetic. The operator % (remainder) is available for integers only.

For floating-point math, many other functions are declared in the header file math.h. Most of these functions
operate in double-precision floating point, for increased accuracy. If these functions are passed an argument
outside of their domain (the domain of a function is the set of legal values for which it is defined), the function
will return some unspecified value and will set the variable errno to the value EDOM. If the return value of the
function is too large or small to be represented by a double (causing overflow or underflow), the function
will return HUGE_VAL (for overflow) or 0 (for underflow) and will set errno to ERANGE. The values EDOM, ERANGE,
and HUGE_VAL are defined in math.h.

The following list describes the functions declared in math.h:

◆ double cos(double), double sin(double), double tan(double) take a value in radians and return
the cosine, sine, and tangent of the value, respectively.

◆ double acos(double), double asin(double), double atan(double) take a value and return the arc
cosine, arc sine, and arc tangent of the value, respectively. The value passed to acos() and asin() must
be in the range –1 to 1, inclusive.

◆ double atan2(double x, double y) returns the arc tangent of the value represented by x/y, even if
x/y is not representable as a double (if y is 0, for instance).

◆ double cosh(double), double sinh(double), double tanh(double) take a value in radians and
return the hyperbolic cosine, hyperbolic sine, and hyperbolic tangent of the value, respectively.

◆ double exp(double x), double log(double x), double log10(double x) take a value and return
ex, the natural logarithm of x, and the logarithm base 10 of x, respectively. The two logarithm
functions will cause a range error (ERANGE) if x is 0 and a domain error (EDOM) if x is negative.

◆ double sqrt(double) returns the square root of its argument. It causes a domain error (EDOM) if the
value passed to it is negative.

C Programming: Just the FAQs240

◆ double ldexp(double n, int e) returns n * 2e. This is somewhat analogous to the << operator for
integers.

◆ double pow(double b, double e) returns be. It causes a domain error (EDOM) if b is 0 and e is less than
or equal to 0, or if b is less than 0 and e is not an integral value.

◆ double frexp(double n, int *i) returns the mantissa of n and sets the int pointed to by i to the
exponent of n. The mantissa is in the range 0.5 to 1 (excluding 1 itself), and the exponent is a number
such that n = mantissa * 2exponent.

◆ double modf(double n, int *i) returns the fractional part of n and sets the int pointed to by i to
the integer part of n.

◆ double ceil(double), double floor(double) return the smallest integer greater than or equal to and
the largest integer less than or equal to their arguments, respectively. For instance, ceil(-1.1) returns
–1.0, and floor(-1.1) returns –2.0.

◆ double fmod(double x, double y) returns the remainder of x/y. This is similar to the % operator
for integers, but it does not restrict its inputs or result to be ints. It causes a domain error (EDOM) if
y is 0.

◆ double fabs(double) returns the absolute value of the value passed to it (a number with the same
magnitude, but always positive). For instance, fabs(-3.14) returns 3.14.

Cross Reference:
II.11: Are there any problems with performing mathematical operations on different variable
types?

XII.14: What are multibyte characters?
Answer:

Multibyte characters are another way to make internationalized programs easier to write. Specifically, they
help support languages such as Chinese and Japanese that could never fit into eight-bit characters. If your
programs will never need to deal with any language but English, you don’t need to know about multibyte
characters.

Inconsiderate as it might seem, in a world full of people who might want to use your software, not everybody
reads English. The good news is that there are standards for fitting the various special characters of European
languages into an eight-bit character set. (The bad news is that there are several such standards, and they don’t
agree.)

Go to Asia, and the problem gets more complicated. Some languages, such as Japanese and Chinese, have
more than 256 characters. Those will never fit into any eight-bit character set. (An eight-bit character can
store a number between 0 and 255, so it can have only 256 different values.)

The good news is that the standard library has the beginnings of a solution to this problem. <stddef.h>
defines a type, wchar_t, that is guaranteed to be long enough to store any character in any language a C
program can deal with. Based on all the agreements so far, 16 bits is enough. That’s often a short, but it’s
better to trust that the compiler vendor got wchar_t right than to get in trouble if the size of a short changes.

Chapter XII • Standard Library Functions 241

The mblen, mbtowc, and wctomb functions transform byte strings into multibyte characters. See your compiler
manuals for more information on these functions.

Cross Reference:
XII.15: How can I manipulate strings of multibyte characters?

XII.15: How can I manipulate strings of multibyte characters?
Answer:

Better than you might think.

Say your program sometimes deals with English text (which fits comfortably into 8-bit chars with a bit to
spare) and sometimes Japanese text (which needs 16 bits to cover all the possibilities). If you use the same
code to manipulate either country’s text, will you need to set aside 16 bits for every character, even your
English text? Maybe not. Some (but not all) ways of encoding multibyte characters can store information
about whether more than one byte is necessary.

mbstowcs (“multibyte string to wide character string”) and wcstombs (“wide character string to multibyte
string”) convert between arrays of wchar_t (in which every character takes 16 bits, or two bytes) and
multibyte strings (in which individual characters are stored in one byte if possible).

There’s no guarantee your compiler can store multibyte strings compactly. (There’s no single agreed-upon
way of doing this.) If your compiler can help you with multibyte strings, mbstowcs and wcstombs are the
functions it provides for that.

Cross Reference:
XII.14: What are multibyte characters?

C Programming: Just the FAQs242

