CHAPTER

¢
Miscellaneous

This book has attempted to cover every major topic of C programming, and hopefully
the information was useful and understandable. It is impossible, however, to cover every
possible aspect of something as complex as the computer in a book as succinct as this.
Therefore, this chapter is devoted to providing a mixed bag of questions and answers
covering areas that might have fallen through the cracks.

XX.1: How are command-line parameters obtained?
Answer:

Every time you run a DOS or Windows program, a Program Segment Prefix, or PSP, is
created. When the DOS program loader copies the program into RAM to execute it, it
first allocates 256 bytes for the PSP, then places the executable in the memory
immediately after the PSP. The PSP contains all kinds of information that DOS needs
in order to facilitate the execution of the program, most of which do not apply to this
FAQ. However, there is at least one piece of data in the PSP that does apply here: the
command line. At offset 128 in the PSP is a single byte that contains the number of
characters of the command line. The next 127 bytes contain the command line itself.
Coincidentally, that is why DOS limits your typing at the DOS prompt to 127
characters—it allocates only that much to hold the command line. Unfortunately, the
command-line buffer in the PSP does not contain the name of the executable—it contains
only the characters you typed after the executable’s name (including the spaces).

350

C Programming: Just the FAQs

For example, if you type

XCOPY AUTOEXEC.BAT AUTOEXEC.BAK

at the DOS prompt, XCOPY.EXE’s PSP command-line buffer will contain
AUTOEXEC.BAT AUTOEXEC.BAK

assuming that the xcopy program resides in the DOS directory of drive C. It’s difficult to see in print, but
you should note that the space character immediately after the xcopy word on the command line isalso copied
into the PSP’s buffer.

Another negative side to the PSP is that, in addition to the fact that you cannot find your own program’s
name, any redirection of output or input noted on the command line is not shown in the PSP’s command-
line buffer. This means that you also cannot know (from the PSP, anyway) that your program’s input or
output was redirected.

By now you are familiar with using the argc and argv argument parameters in your C programs to retrieve
the information. But how does the information get from the DOS program loader to the argv pointer in your
program? It does this in the start-up code, which is executed before the first line of code in your main()
function. During the initial program execution, a function called _setargv() is called. This function copies
the program name and command line from the PSP and DOS environment into the buffer pointed to by
your main() function’s argv pointer. The _setargv() function is found in the xLIBCE.LIB file, x being S
for Small memory model, M for Medium memory model, and L for Large memory model. This library file
isautomatically linked to your executable program when you build it. Copying the argument parametersisn’t
the only thing the C start-up code does. When the start-up code is completed, the code you wrote in your
main() function starts being executed.

OK, that’s fine for DOS, but what about Windows? Actually, most of the preceding description applies to
Windows programs as well. When a Windows program is executed, the Windows program loader creates
a PSP just like the DOS program loader, containing the same information. The major difference is that the
command line is copied into the 1pszcmdLine argument, which is the third (next-to-last) argument in your
winMain() function’s parameter list. The Windows C library file xLIBCEW.LIB contains the start-up
function _setargv(), which copies the command-line information into this 1pszcmdLine buffer. Again, the
X represents the memory model you are using with your program. If you are using QuickC, the start-up code
is contained in the xLIBCEWQ.LIB library file.

Although the command-line information between DOS and Windows programs is managed in basically the
same way, the format of the command line arrives in your C program in slightly different arrangements. In
DOS, the start-up code takes the command line, which is delimited by spaces, and turns each argument into
itsown NULL-terminated string. You therefore could prototype argv asan array of pointers (char * argv[])
and access each argument using an index value of 0 to n, in which n is the number of arguments in the
command line minus one. On the other hand, you could prototype argv as a pointer to pointers (char **
argv) and access each argument by incrementing or decrementing argv.

In Windows, the command line arrives as an LPSTR, Of char _far *. Each argument in the command line
is delimited by spaces, just as they would appear at the DOS prompt had you actually typed the characters
yourself (which is unlikely, considering that this is Windows and they want you to think you are using a
Macintosh by double-clicking the application’s icon). To access the different arguments of the Windows
command line, you must manually walk across the memory pointed to by IpszcmdLine, separating the
arguments, or use a standard C function such as strtok() to hand you each argument one at a time.

Chapter XX ¢ Miscellaneous 351

If you are adventurous enough, you could peruse the PSP itself to retrieve the command-line information.
To do so, use DOS interrupt 21 as follows (using Microsoft C):

#include <stdio.h>
#include <dos.h>

main(int argc, char ** argv)

{
union REGS regs; /* DOS register access struct */
char far * pspPtr; /* pointer to PSP */
int cmdLineCnt; /* num of chars in cmd line */
regs.h.ah = 0x62; /* use DOS interrupt 62 */
int86(0x21, ®s, ®s); /* call DOS */
FP_SEG(pspPtr) = regs.x.bx; /* save PSP segment */
FP_OFF(pspPtr) = 0x80; /* set pointer offset */
/* *pspPtr now points to the command-line count byte */
cmdLineCnt = *pspPtr;

3

It should be noted that in the Small memory model, or in assembly language programs with only one code
segment, the segment value returned by DOS into the BX register is your program’s code segment. In the
case of Large memory model C programs, or assembly programs with multiple code segments, the value
returned is the code segment of your program that contains the PSP. After you have set up a pointer to this
data, you can use this data in your program.

Cross Reference:

XX.2: Should programs always assume that command-line parameters can be used?

XX.2: Should programs always assume that command-line
parameters can be used?

Answer:

These days, you can usually assume that the command-line parameters can be used by your program. Before
DOS 2.0, the command-line information stored in the PSP was slightly different (it didn’t strip input and
output redirection data from the command line). In addition, the data pointed to by argv[o] did not reliably
contain the executable’s pathname until DOS 2.0. The DOS interrupt 62 that retrieves the PSP segment
wasn't available (or at least documented) until DOS 3.0. You therefore can at least assume that you can get
consistent command-line information on PCs running DOS 3.0 or newer.

After you have determined that you are running DOS 3.0 or greater, you can basically do whatever you want
to the command-line data, because the information is placed on the stack for you to play with (via argv).
Of course, normal data manipulation rules apply to command-line data as they do to all data arriving on the
stack. The real problems arise when you don’t have argv provided by your compiler. For example, you could
write your program in assembly language, or in some archaic compiler that does not provide argc and argv.
In these cases, you will have to find some method of retrieving the command-line information yourself. That
is where the DOS interrupt 62 comes in handy.

352

C Programming: Just the FAQs

If you use DOS interrupt 62 to retrieve a pointer to the command line, you must be aware that you are
pointing to data that is used by DOS and for DOS. Although the data is there for you to see, you should
not assume that the data is there for you to alter. If you need to use the command-line information to make
decisions at various times throughout your program, you should copy the data into a local buffer before
actually using the data. This technique enables you to have complete control of the data without worrying
about stepping on DOS’s toes. In fact, this applies also to C programs that supply argv. It is not uncommon
for a function outside main() to need access to the command-line data. For it to get access to the data, your
main() must save it globally, or pass it (once again) on the stack to the function that needs it. It is therefore
good programming practice to save the command-line information into a local buffer if you intend to use
it.

Cross Reference:

XX.1: How are command-line parameters obtained?

XX.3: What is the difference between “exception handling” and
“structured exception handling™

Answer:

Generally speaking, the difference between a structured exception and exception handling is Microsoft’s
implementation of exception handlers themselves. So-called “ordinary” C++ exception handling uses three
statements added to the C++ language: try, catch, and throw. The purpose of these statements is to allow
apiece of software (the exception handler) to attempt a safe bailout of the application that was running when
the exception occurred. The exception handler can trap exceptions on any data type, including a C++ class.
The implementation of the three statements is based on the ISO WG21/ANSI X3J16 C++ standard for
exception handling. Microsoft C++ supports exception handling based on this standard. Note that this
standard applies only to C++ and not to C.

Ontheother hand, structured exception handling isan extension to the Microsoft C/C++ compiler. Itssingle
largest advantage is that it works with either C or C++. Microsoft’s structured exception handling design uses
two new constructs: try-except and try-finally. These two constructs are not a subset or superset of the
ANSI C++standard; instead, they are adifferent implementation of exception handling (leave it to Microsoft
to forge ahead on its own). The try-except construct is known as exception handling, and try-finally is
known as termination handling. The try-except statement allows an application to retrieve the state of the
machine when the exception occurred. This is very handy for displaying information about the error to the
user, or for use while you are debugging your code. The try-final 1y statement enables applications to
guarantee execution of cleanup code when normal code execution is interrupted. Although structured
exception handling has its advantages, it also has its drawbacks. Because this is not an ANSI standard, code
using structured exception handling is not as portable as code using ANSI exception handling. A good rule
of thumb is if your application is going to be a C++ program, you are advised to stick to ANSI exception
handling (use the try, catch, and throw statements).

Cross Reference:

None.

Chapter XX ¢ Miscellaneous 353

XX.4: How do you create a delay timer in a DOS program?
Answer:

Fortunately for us programmers, the folks at Microsoft thought it would be a good idea to create a hardware-
independent delay timer. The purpose, of coursg, is to allow a delay of a fixed amount of time, regardless of
the speed of the computer on which the program is being run. The following example code demonstrates
how to create a delay timer in DOS:

#include <stdio.h>
#include <dos.h>
#include <stdlib.h>

void main(int argc, char ** argv)
{

union REGS regs;

unsigned long delay;

delay = atol(argv[1]); /* assume that there is an argument */

/* multiply by 1 for microsecond-granularity delay */
/* multiply by 1000 for millisecond-granularity delay */
/* multiply by 1000000 for second-granularity delay */
delay *= 1000000;

regs.x.ax
regs.x.cx
regs.x.dx

0x8600;
(unsigned int)((delay & OxFFFFOO0OOL) >> 16);
(unsigned int)(delay & OxFFFF);

int86(0x15, ®s, ®s);
3

The example uses DOS interrupt 0x15, function 0x86, to perform the delay. The amount of delay is in
microseconds. Due to this, the delay function assumes that you might want a really big number, so it expects
the high-order 16 bits of the delay value in cx, and the low-order 16 bits of the delay value in px. At its
maximum, the delay function can stall for more than 4 billion microseconds, or about 1.2 hours.

The example assumes that the delay value will be in microseconds. This version of the example multiplies
the delay by one million so that the delay entered on the command line will be turned into seconds. Therefore,
a “delay 10” command will delay for 10 seconds.

Cross Reference:

XX1.2: How do you create a delay timer in a Windows program?

XX.5: Who are Kernighan and Ritchie?
Answer:

Kernighan and Ritchie are Brian W. Kernighan and Dennis M. Ritchie, authors of The C Programming
Language. Thisbook is known affectionately throughout the world as the “K&R Manual,” the “white book,”

394

C Programming: Just the FAQs

the “K&R Bible,” and other similar names. The book was originally published by Prentice-Hall in
1978. Dennis developed the C programming language for the UNIX operating system running on the
DEC PDP-11 mainframe computer. He and Brian were working for AT&T Bell Laboratories in the early
1970s when both C and the K&R Manual were developed. C was modeled somewhat after the B
programming language, written by Ken Thompson in 1970, and BCPL, written by Martin Richardsin 1969.

Cross Reference:

None.

XX.6: How do you create random numbers?
Answer:

Well, actually, there’s no such thing as a truly random number generator on a computer. However, a point
can be reached where the number repetition pattern is so large that the number appears to be random. That
is the ultimate goal of arandom number generator. Such a device is called a pseudo-random number generator.

There is a lot of theory about how to generate random numbers. | will not discuss in this section the theory
and mathematics behind creating random number generators. Entire books have been written dealing with
this subject alone. What can be said about any random number generator is that no matter which
implementation you use, you must provide the algorithm some value to get it “started.” It helps if this number
is also random, or at least pseudo-random. Fast counting registers or shift registers are often used to create
this initial number, called a seed, that is fed into the generator.

For this book, I will demonstrate the use of the random number generator provided by the C language.
Modern C compilers include a pseudo-random number generator function to help you produce a random
number, based on an ANSI standard. Both Microsoft and Borland support this standard via the rand() and
srand() functions. Here’s how they work: You provide the seed for the srand() function; this seed is an
unsigned int, S0 the range is 0 to 65,535. After you have fed the seed to srand(), you call rand(), which
returns a random number (in the range of 0 to 32,767) based on the seed value provided to srand(). You
can call rand() as many times as you want after seeding srand(), and you’ll continue to get back random
numbers. You can, at any time, seed srand() With a different value to further “randomize” the output of
rand().

This process sounds simple enough. The problem is that if you feed srand() the same seed value each time
you call it, you will get back the same series of “random” numbers. For example, you call srand () with aseed
value of 17. When you call rand(), you get the random number 94. Call rand () again, and you get 26,602.
Call rand() a third time, and you get 30,017. Seems fairly random (although this is a painfully small set of
data points). If, however, you call srand() again, seeding it with 17 again, rand() will return 94, 26,602,
and 30,017 on its first three calls, along with all the remaining numbers you got back in the first series of
calls to rand(). Therefore, you still need to seed srand() with a random number so that it can produce a
random number.

The following example shows a simple, but quite effective, method for generating a fairly random seed
value—the time of day.

Chapter XX < Miscellaneous

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/timeb.h>

void main(void)

{
int i;
unsigned int seedVal;
struct _timeb timeBuf;

_ftime(&timeBuf);

seedvVal = ((((((unsigned int)timeBuf.time & OXFFFF) +
(unsigned int)timeBuf.millitm)) ~
(unsigned int)timeBuf.millitm));

srand((unsigned int)seedVal);

for(i = 0; 1 < 10; ++i)
printf(“%6d\n”, rand());
}

The function calls _ftime () to retrieve the current time of day in seconds elapsed since January 1, 1970 (no
kidding), placed into the timeBuf. time structure member. After the call, the timeBufstructure also contains
the number of milliseconds that have elapsed in the current second in the mi 1 1itm member. Note that in
DOS, mi 1ritmactually holds the number of hundredths of a second that have elapsed in the current second.
The number of milliseconds is added to the elapsed time in seconds, and the total is XORed with the
millisecond count. You could apply many more logical mathematical functions to these two structure
members to control the range of seedval and further its apparent randomness, but this example is sufficient.

Note that in the preceding example, the output of rand() has not been scaled to a specific range. Suppose
that you want to pretend to create a lottery number-picking machine whose values ranged from 1 to 44. You
could simply ignore any output from rand() that did not fall into this range, but it could take a long time
before you acquired the necessary six lottery numbers. Instead, you can scale the output from rand() to any
numeric range you want. Assume that you have produced a satisfactory random number generator that
provides a random number in the range of 0 to 32,767 (as in the case of the earlier example) and that you
want to scale the output down to 1 to 44. The following example shows how to accomplish this task:

int i, k, range;
int min, max;

double j;

min = 1; /* 1 is the minimum number allowed */

max = 44; /* 44 is the maximum number allowed */
range = max - min; /* r is the range allowed: 1 to 44 */

i = randQ; /* use the above example in this slot */

/* Normalize the rand() output (scale to O to 1) */
/* RAND_MAX 1is defined in stdlib.h */
J = ((double)i /7 (double)RAND_MAX);

/* Scale the output to 1 to 44 */
i = (int)(* (double)range);
i += min;

355

356

C Programming: Just the FAQs

This example places a restriction on the random output to a range from 1 to 44. Here’s what the function
does: It getsarandom number whose range is from 0 to RAND_mAX (32,767) and divides that random number
by ranD_max. This process produces a normalized value—that is, a value whose range is O to 1. Next, the
normalized value is scaled up by the range of allowed values (43 in this case—44 minus 1). This produces
avalue from 0 to 43. Next, the minimum amount allowed is added to this number to place the scaled value
in the proper range—1 to 44. To experiment, replace the min and max numbers with different values, and
you’ll see that the example properly scales the random number to the new min and max values.

Cross Reference:

None.

XX.7: When should a 32-bit compiler be used?
Answer:

A 32-bit compiler should be used on a 32-bit operating system. The 32-bit compiler creates 32-bit programs
that run your PC much faster than 16-bit programs—which is why 32-bit anything is hot.

With all the different versions of Microsoft Windows out there, which compiler is best for which operating
system? This passage looks at what Microsoft offers, and assigns the correct compiler to the correct operating
system. Windows 3.1 and Windows for Workgroups 3.11 are 16-bit operating systems; Microsoft Visual
C++1.xisa16-bitcompiler. The compiler produces code that will run on Windows 3.1. Microsoft Windows
NT and Windows 95 are 32-bit operating systems; Visual C++ 2.0, the latest compiler from Microsoft, is
a32-bitcompiler created to produce 32-bit code for these operating systems. The 16-bit programsthat Visual
1.x produces will run on Windows NT and Windows 95 as well as Windows 3.1.

The opposite is not true, however—32-bit code produced by Visual 2.0 will not run on Windows 3.1. This
fact presents a problem for Microsoft, which wants everyone to use its 32-bit compiler but has 60 million
PCs out there running a version of Windows that can’t run these new 32-bit programs. To get around this
obstacle, Microsoft created a translation library called Win32s that performs the 32- to 16-bit “thunking,”
as it is called, to allow 32-bit programs produced by Visual C++ 2.0 to run on Windows 3.1 and Windows
for Workgroups. Win32s is specifically designed to run on Windows 3.1 (and WFW)—it is not meant for
Windows 95 and NT because they do not need to “thunk” to run 32-bit code. Using Win32s, it is possible
to produce a single program using Visual C++ 2.0 that will run on Windows 3.1 (and WFW) as well as
Windows NT.

The only remaining gotcha is the compilers themselves. Visual C++ 1.x is a 16-bit Windows program—it
will run on Windows 95 and N'T and will produce the same 16-bit program asif it were running on Windows
3.1. However, Visual C++ 2.0, being a 32-bit Windows program, will not run on Windows 3.1. It won’t
even run if you install Win32s, because Microsoft conveniently makes sure you are running Windows 95
or NT before Visual 2.0 will start.

Tosummarize, run Visual C++ 1.x (version 1.51 is the latest) on Windows 3.1, Windows for Workgroups,
Windows NT, or Windows 95 to create 16-bit programs that will run on all versions of Windows; run Visual
C++ 2.0 to create 32-bit programs that will run fastest on Windows 95 and NT but will also run very well
on Windows 3.1 (and WFW).

Chapter XX ¢ Miscellaneous 357

For you Borland C/C++ users, Borland’s Turbo C++ Version 3.1 is the latest 16-bit compiler, and Borland
C++ Version 4.5 is the 32-bit Windows compiler (note that the 32-bit compiler doesn’t have the “Turbo”
moniker). Both compilers contain the compiler, Borland’s OWL C++ classes, and an excellent integrated
debugger.

Cross Reference:

None.

XX.8: How do you interrupt a Windows program?
Answer:

There is no trivial way to interrupt a Windows application so that you can perform a necessary task (if that
is your goal). Windows 3.x is a nonpreemptive multitasking operating system. Put another way, it is a
cooperative multitasking operating system. Itis cooperative partly because there is no way to simply steal time
away from a Windows program that is currently in control of the processor. If you look at the Windows AP,
you'll see functions such as PeekMessage () and waitMessage(). As the Microsoft help documentation says
concerning these functions:

The GetMessage, PeekMessage, and waitMessage functions yield control to other applications.
Using these functions is the only way to allow other applications to run. Applications that do not
call any of these functions for long periods prevent other applications from running.

All that having been said, it still can be done. One method is to create a timer in your Windows program
that “goes off ” every so often. As long as your program is alive, you will get time to perform whatever task
you want to when the timer goes off. However, this action is not technically interrupting a program in
process—it is simply using the cooperative multitasking features of Windows. If you need to interrupt a
Windows program, you can do so with a filter function (also called a hook function). A filter function in
Windows is analogous to an interrupt service routine in DOS (see FAQs XX.12 and XX.17). Using a filter
function, you can hook certain Windows events and perform tasks when that event occurs. In fact, you can
use afilter function to monitor nearly every message that exists in Windows using one or more of the available
hooks. This example, however, uses the keyboard hook because it enables you to interrupt a program at will
by entering a specific key combination. The following example hooks the keyboard event chain and puts up
amessage box when the Ctrl-Alt-F6 key is pressed. This method works regardless of the application that is
currently running.

#include <dos.h>
#include <windows.h>

DWORD FAR PASCAL __loadds KeyBoardProc(int, WORD, DWORD);
static FARPROC nextKeyboardFilter = NULL;

BOOL shiftKeyDown, ctrlKeyDown;

#define REPEAT_COUNT 0x000000FF /* test key repeat */
#define KEY_WAS_UP 0x80000000 /* test WM_KEYUP */
#define ALT_KEY_DOWN 0x20000000 /* test Alt key state */

#define EAT_THE_KEY 1 /* swallow keystroke */

358 C Programming: Just the FAQs

#define SEND_KEY_ON 0 /* act on keystroke */

BOOL useAltKey = TRUE; /* use Alt key in sequence */
BOOL useCtrlKey = TRUE; /* also use Ctrl key */

BOOL useShiftKey = FALSE; /* don’t use Shift key */

/* Entry point into the DLL. Do all necessary initialization here */

int FAR PASCAL LibMain(hModule, wDataSeg, chbHeapSize, lpszCmdLine)
HANDLE hModule;

WORD wDataSeg;

WORD cbHeapSize;

LPSTR IpszCmdLine;

{
/* initialize key state variables to zero */
shiftKeyDown = O;
ctriKeyDown = 0;
return 1;
}

/* The keyboard filter searches for the hotkey key sequence.
IT it gets it, it eats the key and displays a message box.
Any other key is sent on to Windows. */

DWORD FAR PASCAL __loadds
KeyBoardProc(int nCode, WORD wParam, DWORD IParam)

{
BOOL fCallDefProc;
DWORD dwResult = 0;
dwResult = SEND_KEY_ON; /* default to send key on */
fCallDefProc = TRUE; /* default to calling DefProc */
switch(nCode){

case HC_ACTION:
case HC_NOREMOVE:

/* 1f key is Shift, save it */

if(wParam == (WORD)VK_SHIFT){
shiftKeyDown = ((IParam & KEY_WAS UP) ? 0 : 1);
break;

}

/* 1f key is Ctrl, save it */

else if(wParam == (WORD)VK_CONTROL){
ctrikKeyDown = ((IParam & KEY_WAS UP) ? 0 : 1);
break;

}

/* 1f key is the F6 key, act on it */
else if(wParam == (WORD)VK_F6){

/* Leave if the F6 key was a key release and not press */
if(IParam & KEY_WAS_UP) break;

/* Make sure Alt key is in desired state, else leave */
iT((useAltKey) && !(IParam & ALT_KEY_DOWN)){

Chapter XX ¢ Miscellaneous 359

break;

3
else if((luseAltKey) && (IParam & ALT_KEY_DOWN)){
break;

}

/* Make sure Shift key is in desired state, else leave */
if(useShiftKey && !shiftKeyDown){
break;

3
else if(luseShiftKey && shiftKeyDown){
break;

}

/* Make sure Ctrl key is in desired state, else leave */
if(useCtriKey && !ctriKeyDown){
break;

else if(luseCtriKey && ctrlkeyDown){
break;

}

/* Eat the keystroke, and don’t call DefProc */
dwResult = EAT THE_KEY;
fCal IDefProc = FALSE;

/* We made it, so Ctrl-Alt-F6 was pressed! */
MessageBox(NULL, (LPSTR)”You pressed Ctrl-Alt-F6!1”,

(LPSTR)’Keyboard Hook”, MB_OK);
break;

}

default:
fCallDefProc = TRUE;
break;

}

if((nCode < 0) || (fCallDefProc && (nextKeyboardFilter != NULL)))
dwResult = DefHookProc(nCode, wParam, IParam,
&nextKeyboardFilter);

return(dwResult);

}

/* This function is called by the application to set up or tear
down the filter function hooks. */

void FAR PASCAL
SetupFilters(BOOL install)
{
if(instal){
nextKeyboardFilter = SetWindowsHook(WH_KEYBOARD,
(FARPROC)KeyBoardProc) ;

3

else{
UnhookWindowsHook (WH_KEYBOARD, (FARPROC)KeyBoardProc);
nextKeyboardFilter = NULL;

3

360

C Programming: Just the FAQs

Microsoft strongly recommends placing filter functions in a DLL rather than your application (notice the
presence of a Libmain() and the lack of a winmain()). To complete this application, you need to write an
ordinary Windows application that calls the setupFilters() function with TRUE as the argument to start
monitoring keystrokes, and FALSE as the argument to stop monitoring keystrokes. While your application
is alive and you have called setupFilters(TRUE), the callback function keyBoardProc() is receiving all
keystrokes, even while you are running other Windows applications. Ifyou press Ctrl-Alt-F6, asmall message
box appears on-screen informing you that you pressed those keys. Presto, you have just interrupted whatever
Windows application was running at the time you pressed those keys!

Note that the keyboard filter function will not receive keystrokes while in a DOS shell. However, the filter
function will receive, and can interrupt, a system modal dialog box like the one that asks whether you really
want to exit Windows.

Cross Reference:

XX.12: How can | pass data from one program to another?
XX.17: Can you disable warm boots (Ctrl-Alt-Del)?
XX1.10: What is dynamic linking?

XX.9: Why should I use static variables?
Answer:

Static variables are excellent for use as a local variable that does not lose its value when the function exits. For
example, you might have a function that gets called numerous times, and that part of the function’s job is
to count how many times it gets called. You cannot accomplish this task with a simple local variable because
it will be uninitialized each time the function is entered. If you declare your counter variable as static, its
current value will be maintained, just as with a global variable.

So why not just use a global variable instead? You could, and there’s nothing wrong with using a global
variable. The problem with using global variables is that maintaining a program with lots of global variables
becomes cumbersome, particularly if you have numerous functions that uniquely access one global variable.
Again, there’s nothing wrong with doing it that way—the issue simply becomes one of good code design and
readability. By declaring such variables as static, you are informing yourself (or another person who might
be reading your code) that this variable is local but is treated like a global (maintains its value). If the static
variable was instead declared as a global, the person reading the code must assume that the global is accessed
in many places when in fact it might not be.

In summary, the reason you should use static variables is that it is good programming practice when you need
a localized variable that maintains its state.

Cross Reference:

11.17: Can static variables be declared in a header file?

Chapter XX ¢ Miscellaneous 361

XX.10: How can | run another program after ming?
Answer:

Of course, the easiest way to run another program after yours is to put them both in a batch file, one after
the other. When you run the batch file, the programs listed will execute in order. But you already knew that.

There is no specific method for performing a “when my program is finished, run this one” function call in
Corin DOS. However, C provides two sets of functions that will allow a program at any time to run another
program that basically ends the first program upon execution of the second. If you were to put such a call
at the end of your first application, you could do exactly what you need. The two functions provided are
exec() and spawn(). In reality, each function is actually a family of functions, each function allowing a
unique twist over the other functions in the family. The exec family of functions is execl (), execleQ,
execlp(), execlpe(), execv(), execve(), execvp(), and execvpe(). The following list shows what the e, 1,
p, and v additions mean to the function:

e An array of pointers to environment parameters is explicitly passed to the child process.
I Command-line arguments are passed individually to the executable.
p Uses the paTH environment variable to find the file to be executed.
v Command-line arguments are passed to the executable as an array of pointers.
Which combination of options you choose in your application is entirely up to you and the needs of the

application you want to launch. Following is an example of a program that calls another application whose
name is specified on the command line:

#include <stdio.h>
#include <process.h>

char *envString[] = { /* environment for the app */
“COMM_VECTOR=0x63"", /* communications vector */
“PARENT=LAUNCH.EXE”, /* name of this app */
“EXEC=EDIT.COM”, /* name of app to exec */
NULL}; /* must be NULL-terminated */

void

main(int argc, char ** argv)

{

/* Call the one with variable arguments and an environment */
_execvpe(“EDIT.COM”, argv, envString);

printf(“If you can read this sentence, the exec didn’t happen!\n”);

¥

In the preceding short example, _execvpe() is called to execute EDIT.COM, the DOS file editor. The
arguments to eo1T come from the command line to the example. After the exec has occurred, the original
application has gone away; when EpiT exits, you are returned to the DOS prompt. If the printf() statement
is displayed on-screen, something went awry in the exec attempt, because you will not get there if the exec
succeeds. Note that the environment variables for EDIT.COM are completely meaningless. However, if you
did execaprogram that needed the environment variables, they would be available for use by the application.

362

C Programming: Just the FAQs

There is a second way to accomplish this same task—spawn(). The spawn function family is spawn1Q,
spawnle(), spawnlp(), spawnlpe(), spawnv(), spawnve(), spawnvp(), and spawnvpe(). The e, I, p, and v
appendages mean the same as they do with exec. In fact, this function family is identical to exec except for
one small difference—spawn can either launch another application while killing the original, or launch
another application and return to the original when the second application is complete. The argument list
for the spawn functions is identical to that for exec except that one additional argument is required: you must
use _p_overLAY (original application dies) or _p_waiT (return to original when finished) as the firstargument
to the spawn functions. The following example demonstrates the same task as the preceding example:

#include <stdio.h>
#include <process.h>

char *envString[] = { /* environment for the app */
“COMM_VECTOR=0x63"", /* communications vector */
“PARENT=LAUNCH.EXE”, /* name of this app */
“EXEC=EDIT.COM”, /* name of app to exec */
NULL}; /* must be NULL-terminated */
void

main(int argc, char ** argv)

{

/* Call the one with variable arguments and an environment */
_spawnvpe(_P_OVERLAY, “EDIT.COM”, argv, envString);

printf(“If you can read this sentence, the exec didn’t happen!\n”);

}

The only difference here is the name change from exec to spawn, and the additional mode argument. What
is nice about spawn’s capability to overlay versus wait is the ability to make a runtime decision regarding
waiting or leaving during the spawn. In fact, the _p_wa1T argument answers the next FAQ.

Cross Reference:

XX.11: How can I run another program during my program’s execution?

XX.11: How can | run another program during my program’
execution?

Answer:

As seen in the preceding example, the spawn family of functions allows one application to start another
application, then return to the original application when the first one is finished. Read FAQ XX.10foragood
background dose of spawn and for example code (all you have to do is change _P_overLAY to _p_wAIT and
you’re done).

However, there is another way to accomplish this task that needs to be mentioned. This other method
involves the systemQ) call. The system() function is similar to, but still different from, the exec or spawn
functions. In addition to suspending the current application to execute the new one (instead of killing it),

Chapter XX ¢ Miscellaneous 363

system() launches the COMMAND.COM command interpreter (or whatever command interpreter is
running on your machine) to run the application. If COMMAND.COM or its equivalent cannot be found,
theapplication is not executed (this is not the case with execand spawn). The following example is yet another
version of a call to EDIT.COM to open a file, whose name arrives from the example program’s command
line:

#include <stdio.h>

#include <process.h>
#include <stdlib.h>

char argStr[255];

void
main(int argc, char ** argv)
{

int ret;

/* Have EDIT open a file called HELLO if no arg given */
sprintf(argStr, “EDIT %s”, (argv[1] == NULL ? “HELLO” : argv[1])):

/* Call the one with variable arguments and an environment */
ret = system(argStr);

printf(“system() returned %d\n”, ret);
}

As it was with the earlier example (using _p_waiT), the printf() statement after the system() call is executed
because the initial program was merely suspended and not killed. In every case, system() returnsavalue that
signifies success or failure to run the specified application. It does not return the return code from the
application itself.

Cross Reference:

XX.10: How can | run another program after mine?

XX.12: How can | pass data from one program to another?
Answer:

You can accomplish this task in a couple of basic ways—you can pass the data via a file or via memory. The
steps for any of the methods are fairly straightforward: you define where the data is to be placed, how to get
itthere, and how to notify the other program to get or set the data; then you get or set the data in that location.
Although the file technique is simple to define and create, it can easily become slow (and noisy). Thisanswer
will therefore concentrate on the memory data-transfer technique. The parts of the process will be detailed
one at a time:

Define where the data is to be placed. When you write the two applications (it takes two to share), you must
build into them a way to know where the data is going to be when you need to retrieve it. Again, there are
several ways you can solve this part. You can have a fixed data buffer internal to one (or each of the programs)
and pass a pointer to the buffer back and forth. You could dynamically allocate the memory and pass a pointer
to the data back and forth. If the data is small enough, you could pass the information through the CPU’s

364

C Programming: Just the FAQs

general purpose registers (this possibility is unlikely due to the pitifully few number of registers in the x86
architecture). The most flexible and modular method is to dynamically allocate the memory.

Define how to get the data there. This part is straightforward—you use _fmemcpy () Or an equivalent memory
copy routine. This naturally applies for both getting and setting the data.

Define how to notify the other program. Because DOS is not a multitasking operating system, it is obvious that
one (or both) of the programs must have some part of the software already resident in memory that can accept
the call from the other program. Again, several choices are available. The first application could be a device
driver that is referenced in CONFIG.SYS and loaded at boot time. Or it could be a TSR (terminate-and-
stay-resident) application that leaves the inter-application part of the program resident in memory when it
exits. Another option is to use the system() or spawn() calls (see FAQ XX.11) to start the second application
from within the first one. Which option you select depends on your needs. Because data passing to and from
a DOS device driver is already well documented, and system() and spawn() calls were documented earlier,
I’ll describe the TSR method.

The following example code is a complete program but is admittedly thin for the purposes of grasping only
the critical pieces of the process (see FAQ XX.15 regarding example code). The following example shows a
TSR that installs an interrupt service routine at interrupt 0x63, then calls the terminate-and-stay-resident
exit function. Next, another program is executed that simply initiates an interrupt call to 0x63 (much like
you make DOS int21 calls) and passes “Hello World™ to that program.

#include <stdlib.h>
#include <dos.h>
#include <string.h>

void SetupPointers(void);
void OutputString(char *);

#define STACKSIZE 4096

unsigned int _near OldStackPtr;

unsigned int _near OldStackSeg;

unsigned int _near MyStackOff;

unsigned int _near MyStackSeg;

unsigned char _near MyStack[STACKSIZE];

unsigned char _far * MyStackPtr = (unsigned char _far *) MyStack;

unsigned short AX, BX, CX, DX, ES;

/* My interrupt handler */

void _interrupt _far _cdecl NewCommVector(
unsigned short es, unsigned short ds, unsigned short di,
unsigned short si, unsigned short bp, unsigned short sp,
unsigned short bx, unsigned short dx, unsigned short cx,
unsigned short ax, unsigned short ip, unsigned short cs,
unsigned short flags);

/* Pointers to the previous interrupt handler */
void (interrupt _far _cdecl * comm_vector)();

union REGS regs;
struct SREGS segregs;

#define COMM_VECTOR 0x63 /* Software interrupt vector */

/* This is where the data gets passed into the TSR */

Chapter XX ¢ Miscellaneous 365

char _far * callerBufPtr;
char localBuffer[255]; /* Limit of 255 bytes to transfer */
char _far * localBufPtr = (char _far *)localBuffer;

unsigned int ProgSize = 276; /* Size of the program in paragraphs */
void

main(int argc, char ** argv)

{

int i, idx;

/* Set up all far pointers */
SetupPointers();

/* Use a cheap hack to see if the TSR is already loaded
If it is, exit, doing nothing */
comm_vector = _dos_getvect(COMM_VECTOR);
if(((long)comm_vector & OXFFFFL) ==
((long)NewCommVector & OxFFFFL)){
OutputString(“Error: TSR appears to already be loaded.\n’);
return;

}

/* If everything’s set, then chain in the ISR */
_dos_setvect(COMM_VECTOR, NewCommVector);

/* Say we are loaded */
OutputString(“TSR is now loaded at 0x63\n”);

/* Terminate, stay resident */
_dos_keep(0, ProgSize);
3

/* Initializes all the pointers the program will use */

void
SetupPointers()
{

int idx;

/* Save segment and offset of MyStackPtr for stack switching */
MyStackSeg = FP_SEG(MyStackPtr);
MyStackOff = FP_OFF(MyStackPtr);

/* Initialize my stack to hex 55 so I can see its footprint
if 1 need to do debugging */

For(idx=0; idx<STACKSIZE; idx++){
MyStack[idx] = 0x55;

3

}

void _interrupt _far _cdecl NewCommVector(
unsigned short es, unsigned short ds, unsigned short di,
unsigned short si, unsigned short bp, unsigned short sp,
unsigned short bx, unsigned short dx, unsigned short cx,
unsigned short ax, unsigned short ip, unsigned short cs,
unsigned short flags)

AX = ax;

306 C Programming: Just the FAQs

BX = bx;
CX = cx;
DX = dx;
ES = es;

/* Switch to our stack so we won’t run on somebody else’s */

_asm{
; set up a local stack
cli ; stop interrupts
mov OldStackSeg,ss ; save stack segment
mov OldStackPtr,sp ; save stack pointer (offset)
mov ax,ds ; replace with my stack s
mov Ss,ax ; ditto
mov ax,MyStackOff ; replace with my stack ptr
add ax,STACKSIZE - 2 ; add in my stack size
mov sp,ax ; ditto
sti ; OK for interrupts again
¥
switch(AX){
case 0x10: /* print string found in ES:BX */
/* Copy data from other application locally */
FP_SEG(callerBufPtr) = ES;
FP_OFF(callerBufPtr) = BX;
_fstrcpy(localBufPtr, callerBufPtr);
/* print buffer “CX’ number of times */
for(; CX>0; CX--)
OutputString(localBufPtr);
AX = 1; /* show success */
break;
case 0x30: /* unload; stop processing interrupts */
_dos_setvect(COMM_VECTOR, comm_vector);
AX = 2; /* show success */
break;
default:
OutputString(““Unknown command\r\n’”);
AX = OXFFFF; /* unknown command -1 */
break;
}

/* Switch back to the caller’s stack */

_asm{
cli ; turn off interrupts
mov ss,0ldStackSeg ; reset old stack segment
mov sp,O0ldStackPtr ; reset old stack pointer
sti ; back on again

}

ax = AX; /* use return value from switch() */

}

/* avoids calling DOS to print characters */
void
OutputString(char * str)

Chapter XX ¢ Miscellaneous 367

{
int i;
regs.h.ah = OxOE;
regs.x.bx = 0;
for(i=strlen(str); i>0; i--, str++){
regs.-h.al = *str;
int86(0x10, ®s, ®s);
3
3

The preceding section is the TSR portion of the application pair. It has a function, NewCommvector(),
installed at interrupt 0x63 (0x63 is typically an available vector). After it is installed, it is ready to receive
commands. The switch statement is where the incoming commands are processed and actions are taken.
I arbitrarily chose 0x10 to be the command “copy data from es:Bxand print that data to the screen cx number
of times.” I chose 0x30 to be “unhook yourself from 0x63 and stop taking commands.” The next piece of
code is the other program—the one that sends the commands to 0x63. (Note that it must be compiled in
the Large memory model.)

#include <stdlib.h>
#include <dos.h>

#define COMM_VECTOR 0x63

union REGS regs;
struct SREGS segregs;

char buffer[80];
char _far * buf = (char _far *)buffer;

main(int argc, char ** argv)

{

int cnt;
cnt = (argc == 1 ? 1 : atoi(argv[1]));
strcpy(buf, “Hello There\r\n);

regs.x.ax 0x10;
regs.x.cx cnt;
regs.x.bx FP_OFF(buf);

segregs.es = FP_SEG(buf);

int86x(COMM_VECTOR, ®s, ®s, &segregs);

printf(“ISR returned %d\n”, regs.x.ax);

¥

You might think that this short program looks just like other programs that call int21 or int1o0 to set or
retrieve information from DOS. If you did think that, you would be right. The only real difference is that
you use 0x63 rather than 0x21 or 0x10 as the interrupt number. This program simply calls the TSR and
requests it to print the string pointed to by es:bx on-screen. Lastly, it prints the return value from the
interrupt handler (the TSR).

368

C Programming: Just the FAQs

By printing the string “Hel 1o There™ on-screen, | have achieved all the necessary steps for communicating
between two applications. What is so cool about this method is that | have only scratched the surface of
possibilities for this method. It would be quite easy to write a third application that sends a command such
as “give me the last string that you were asked to print.” All you have todo isadd that command to the switch
statement in the TSR and write another tiny program that makes the call. In addition, you could use the
system() Or spawn() callsshown in FAQ XX.11 to launch the TSR from within the second example program.
Because the TSR checks to see whether it is already loaded, you can run the second program as often as you
want, and only one copy of the TSR will be installed. You can use this in all your programs that “talk” to
the TSR.

Several assumptions were made during the creation of the TSR. One assumption is that there isno important
interrupt service routine already handling interrupt 0x63. For example, | first ran the program using
interrupt 0x67. It loaded and worked, but I could no longer compile my programs because interrupt 0x67
is also hooked by the DOS extender used by Microsoft to run the C compiler. After | sent command 0x30
(unload yourself), the compiler ran flawlessly again because the DOS extender’s interrupt handler was
restored by the TSR.

Another assumption was in the residency check. I assumed that there will never be another interrupt handler
with the same near address as Newcommvector(). The odds of this occurring are extremely small, but you
should know this method is not foolproof. Although I switched stacks in NewCommvector () to avoid running
on the calling program’s stack, | assume that it is safe to call any function | want. Note that I avoided calling
printf because it is a memory hog and it calls DOS (int21) to print the characters. At the time of the
interrupt, | do not know whether DOS is available to be called, so I can’t assume that | can make DOS calls.
Note that | can make calls (like the one to outputstring()) that do not use the DOS int21 services to perform
the desired task. Ifyou must use a DOS service, you can checka DOS busy flag to see whether DOS is callable
at the time. A note about _dos_keep(). It requires you to tell it how many paragraphs (16-byte chunks) of
datato keep in memorywhen exiting. For this program, | give it the size of the entire executable in paragraphs,
rounded up a bit (276). Asyour program grows, you must also grow this value, or strange things will happen.

Cross Reference:

XX.10: How can | run another program after mine?
XX.11: How can I run another program during my program’s execution?
XX.15: Some of your examples are not very efficient. Why did you write them so badly?

XX.13: How can | determine which directory my program is
running from?

Answer:

Fortunately for us DOS programmers, the DOS program loader provides the full pathname of the executable
file when it is run. This full pathname is provided via the argv[o] pointer, which is pointed to by the argv
variable inyour main() function. Simply strip off the name of your program, and you have the directory from
which your application is running. A bit of example code demonstrates this:

Chapter XX ¢ Miscellaneous 369

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void main(int argc, char ** argv)
{

char execDir[80];

int i, t;

/* set index into argv[0] to slash character prior to appname */
for(i = (strlen(argv[0]) - 1);

((argv[0][1] != “/7) && (argv[O][i] !'= “\\")); --i);
/* temporarily truncate argv[] */
t = argv[O0][i];
argv[0][i] = O;

/* copy directory path into local buffer */
strcpy(execDir, argv[0]);

/* put back original character for sanity’s sake */
argv[0][i] = t;
3

Cross Reference:

XX.1: How are command-line parameters obtained?

XX.14: How can I locate my program’s important files
(databases, configuration files, and such)?

Answer:

DOS provides a pair of functions that enable you to search a directory for a file of any type. You can search
for files that are normal, archive, hidden, system, read-only, directories, and even volume labels. Following
is a short example of how to search for a particular file in the current directory:

#include <stdio.h>
#include <dos.h>

void main(void)

{
struct _find_t myFile;
_dos_findfirst(“MYFILE.INI”, A NORMAL, &myFile);
while(_dos_findnext(&myFile) == 0)
printf(“Found file %s of size %s\n”, myFile.name,
myFile.size);
3

This example demonstrates how the _dos_findfirst() and _dos_findnext() functions work. You can go
into a directory and use these two functions as shown to find a file of a particular name. These functions also

370 C Programming: Just the FAQs

allow the * and ? wildcards. They will return every file in a directory if you use *.* as the filename. To find
every file on the hard drive, place the preceding example code in a recursive function that will go into
subdirectories to search for the specified file.

Cross Reference:

None.

XX.15: Some of your examples are not very efficient. Why did
you write them so badly?

Answer:

Although some of the examples are complete programs because they are tiny, it is not necessary, nor is it
practical, to display complete, fully documented programs. They are distracting in that they break up the
flow of the book, and they do not help you in your basic goal, which I hope is to attain specific, informative,
but brief answers to your questions.

Cross Reference:

XX.12: How can | pass data from one program to another?
XX.14: How can | locate my program’s important files (databases, configuration files, and such)?

XX.16: How do you disable Ctrl-Break?
Answer:

There are several ways to disable the Ctrl-Break function. I will discuss two popular techniques for
accomplishing this task.

The first technique is to use DOS to disable Ctrl-Break. DOS interrupt 0x21, function 0x33 enables you
to get and set the Ctrl-Break check flag, that is, the flag that tells DOS whether to process the Ctrl-Break keys
when they are pressed. The following example illustrates this method:

#include <stdio.h>
#include <dos.h>

void main(int argc, char ** argv)

{

union REGS regs;
int ctriBreakFlag;

/* find out the current state of the flag */

regs.x.ax = 0x3300; /* subfunction 0 gets flag state */
int86(0x21, ®s, ®s);
ctriBreakFlag = regs.h.dl; /* save flag value from DL */

/* set the state of the flag to disable Ctrl-Break */

Chapter XX < Miscellaneous

regs.x.ax = 0x3301;
regs.h.dl = 0; /* disable checking */
int86(0x21, ®s, ®s); /* subfunction 1 sets flag state */

¥

In the preceding example, DOS was called to query the current state of the Ctrl-Break check flag, which was
saved into ctriBreakFlag. Thereturnvalue from the DOScall, found in DL, will be O if Ctrl-Break checking
is disabled, and 1 if checking is enabled. Next, the code clears DL and calls the DOS Set Ctrl-Break flag
function todisable Ctrl-Break checking. Thiswill be true until it is reset again by another call to this function.
Not shown in the preceding example is subfunction 02 (AX = 0x3302), which simultaneously gets and sets
the state of the Ctrl-Break flag. To perform this task, put 0x3302 into AX, put the desired Ctrl-Break state
in DL, do the interrupt, and save the previous state from DL into ctriBreakFlag.

The second major method is to use a signal. A signal is a carryover from the old UNIX days (hey, I’'m not
that old!). The purpose of the signal function is to allow the programmer to be called when certain events
occur. One of these events is the user interruption, or Ctrl-Break in DOS-land. The next example
demonstrates how to use the Microsoft signal () function to trap and act on the Ctrl-Break event (assume
that Ctrl-Break checking is enabled):

#include <stdio.h>
#include <signal.h>

int exitHandler(void);

int main(int argc, char ** argv)

{

int quitFlag = O;

/* Trap all Ctrl-Breaks */

signal (SIGINT, (void (__cdecl *)(int))exitHandler);

/* Sit in infinite loop until user presses Ctrl-Break */

while(quitFlag == 0)

printf(“%s\n”, (argc > 1) ? argv[1] : “Waiting for Ctrl-Break™);

b

/* Ctrl-Break event handler function */

int exitHandler()

{

char ch;

/* Disable Ctrl-Break handling while inside the handler */
signal (SIGINT, SIG_IGN);

/* Since it was an “interrupt,” clear keyboard input buffer */
Fflush(stdin);

/* Ask if user really wants to quit program */
printf(“\nCtrl-Break occurred. Do you wish to exit this program?
O¢y or N) “);

/* Flush output buffer as well */
fflush(stdout);

/* Get input from user, print character and newline */

371

372

C Programming: Just the FAQs

ch = getche();
printf(*\n”);

/* 1T user said yes, leave program */
if(toupper(ch) == “Y?)
exit(0);

/* Reenable Ctrl-Break handling */
signal (SIGINT, (void (__cdecl *)(int))exitHandler);

return(0);
3

The beauty of this example is that you have a function that gets called every time Ctrl-Break is pressed. This
means you have the choice of what you want to do. You can ignore the event, which is essentially “disabling”
Ctrl-Break. Or you can act on it in any way you want. Another advantage to this method is that when your
program exits, normal operation of Ctrl-Break resumes without manual intervention.

Cross Reference:

XX.17: Can you disable warm boots (Ctrl-Alt-Delete)?

XX.17: Can you disable warm boots (Ctrl-Alt-Delete)?
Answer:

Yes. Disabling warm boots is not particularly easy to figure out, but it is not difficult to actually code. To
trap a Ctrl-Alt-Delete key sequence, you must trap the keyboard’s interruptservice routine (ISR). Fromahigh-
level perspective, it works like this: You monitor (trap) all keystrokes, waiting for the dreaded Ctrl-Alt-Delete
combination. If the keystroke is not Ctrl-Alt-Delete, you pass the keystroke on to the “computer”
(remember, I'm speaking in high-level terms). When you see the Ctrl-Alt-Delete combination, you can
swallow it (remove it from the keyboard’s character buffer) or change it to some other keystroke (one that
your program might be expecting to mean that the user just tried to reboot the machine). Whenyour program
isfinished, it stops monitoring the keystrokes and resumes normal operation. This is how TSRs work—they
chain themselves to the keyboard and other interrupts so that they can know when to pop up and do that
voodoo that they do so well.

“So how do you do this?” you might ask. With a C program, of course. The next example shows a simplified
form of trapping all Ctrl-Alt-Delete keystrokes and doing “nothing” when that combination is pressed:

#include <stdlib.h>
#include <dos.h>

/* function prototypes */

void (interrupt _far _cdecl KbIntProc)(
unsigned short es, unsigned short ds, unsigned short di,
unsigned short si, unsigned short bp, unsigned short sp,
unsigned short bx, unsigned short dx, unsigned short cx,
unsigned short ax, unsigned short ip, unsigned short cs,
unsigned short flags);

void (interrupt _far _cdecl * OldKbIntProc)(void);

Chapter XX
unsigned char far * kbFlags; /* pointer to keyboard flags */
int key_char, junk; /* miscellaneous variables */

/* keyboard scancode values */
#define ALT 0x8
#define CTRL Ox4
#define KEY_MASK OxOF

#define DELETE 0x53
void

main(int argc, char ** argv)
{

int i, idx;

/* Save old interrupt vectors */
OldKbIntProc = _dos_getvect(0x9);

/* Set pointer to keyboard flags */
FP_SEG(kbFlags) = 0;
FP_OFF(kbFlags) = 0x417;

/* Add my ISR to the chain */
_dos_setvect(0x9, KbIntProc);

/* Print something while user presses keys... */
/* Until ESCAPE is pressed, then leave */
while(getch() = 27){

printf(“Disallowing Ctrl-Alt-Delete...\n");
3

/* Remove myself from the chain */
_dos_setvect(0x9, OldKbIntProc);

void _interrupt _far _cdecl KbIntProc(
unsigned short es, unsigned short ds, unsigned short di,
unsigned short si, unsigned short bp, unsigned short sp,
unsigned short bx, unsigned short dx, unsigned short cx,
unsigned short ax, unsigned short ip, unsigned short cs,
unsigned short flags)

/* Get keystroke input from keyboard port */
key _char = inp(0x60);

iT(((*kbFlags & KEY_MASK) == (CTRL | ALT))
&& (key_char == DELETE)){

/* Reset the keyboard */

Junk = inp(0x61);

outp(0x61, (Gunk | 0x80));
outp(0Ox61, junk);

outp(0x60, (key_char | 0x80));
outp(0x60, 0x9C);

Miscellaneous

373

374

C Programming: Just the FAQs

}

/* Reset the interrupt counter */
outp(0x20, 0x20);

/* Now call the next ISR in line */
(*0ldKbIntProc)(Q);

}

There are only two sections to this program: the main() body and the keyboard interrupt service routine
KbIntProc(). The main() UseS _dos_getvect() to retrieve the address of the function (ISR) that is currently
servicing keystrokes from the keyboard. Next, it uses _dos_setvect() to replace the keyboard servicing
function with your own—«kbIntProc(). Awhi le loop that constantly gets keystrokes prints the same message
repeatedly until the Escape key (decimal 27) is pressed. When that event occurs, the program calls
_dos_setvect() to restore the original keyboard servicing program into place.

However, kointProc() iswhereall the fun takes place. When installed (by the _dos_setvect() call described
previously), it getsto look at all keystrokes before anyone else. Therefore, it hasthe first crack at manipulating
or entirely removing the keystroke that came in. When a keystroke arrives, the keyboard is checked to see
whether the Ctrl and Alt keys are down. Also, the keystroke itself is checked to see whether it is the Delete
key (hex53). Ifboth casesare true, the Delete key is removed by resetting the keyboard. Regardless of whether
the keystroke was ignored, manipulated, or removed by you, the ISR always calls the original keyboard
interrupt service routine (o1dkbintProc()). Otherwise, the machine immediately grinds to a halt.

When this example program is executed, it prints “Disallowing Ctrl-Alt-Delete...” each time you press any
key. When you do press Ctrl-Alt-Delete, nothing happens, because the keystroke is removed and the
computer has no idea you are pressing those three keys. Exiting the program restores the state of the machine
to normal operation.

If you think about it, you will realize that this program can trap any keystroke or key combination, including
Ctrl-C and Ctrl-Break. You therefore could legitimately consider this method for trapping the Ctrl-Break
key sequence. I should point out that this method is quite intrusive—the tiniest of bugs can quickly halt the
machine. But don’t let that stop you from learning or having fun.

Cross Reference:

XX.16: How do you disable Ctrl-Break?

XX.18: How do you tell whether a character is a letter of
the alphabet?

Answer:

All letters of the alphabet (including all keys on a computer keyboard) have an assigned number. Together,
these characters and their associated numbers compose the ASCII character set, which is used throughout
North America, Europe, and much of the English-speaking world.

Chapter XX ¢ Miscellaneous 375

The alphabet characters are conveniently grouped into lowercase and uppercase, in numerical order. This
arrangement makes it easy to check whether a value is a letter of the alphabet, and also whether the value is
uppercase or lowercase. The following example code demonstrates checking a character to see whether it is
an alphabet character:

int ch;
ch = getche();

if((ch >= 97) && (ch <= 122))
printf(“%c is a lowercase letter\n”, ch);
else if((ch >= 65) && (ch <= 90))
print(“%c is an uppercase letter\n”, ch);
else

printf(“%c is not an alphabet letter\n”, ch);

The values that the variable ch is being checked against are decimal values. Of course, you could always check
against the character itself, because the ASCII characters are defined in alphabetical order as well as numerical
order, as shown in the following code example:

int ch;
ch = getche();
if((ch >= “a’) && (ch <= “z7))
printf(“%c is a lowercase letter\n”, ch);
else if((ch >= “A”) && (ch <= “Z7))

print(“%c is an uppercase letter\n”, ch);
else

printf(“%c is not an alphabet letter\n”, ch);

The method you choose to use in your code is arbitrary. On the other hand, because it is hard to remember
every character inthe ASCII chart by its decimal equivalent, the latter code example lends itself better to code
readability.

Cross Reference:

XX.19: How do you tell whether a character is a number?

XX.19: How do you tell whether a character is a number?
Answer:

As shown in the ASCII chart in FAQ XX.18, character numbers are defined to be in the range of decimal
48 to 57, inclusive (refer to FAQ XX.18 for more information on the ASCII chart). Therefore, to check a
character to see whether it is a number, see the following example code:

int ch;
ch = getche();

if((ch >= 48) && (ch <= 57))
printf(“%c is a number character between 0 and 9\n”, ch);

376

C Programming: Just the FAQs

else
printf(“%c is not a number\n”, ch);

Asinthe preceding FAQ, you can check the variable against the number character range itself, as shown here:
int ch;

ch = getche(Q);

if((ch >= “0”) && (ch <= “97))

printf(“%c is a number character between 0 and 9\n”, ch);
else

printf(“%c is not a number\n”, ch);

As before, which method you choose is up to you, but the second code example is easier to understand.

Cross Reference:

XX.18: How do you tell whether a character is a letter of the alphabet?

XX.20: How do you assign a hexadecimal value to a variable?
Answer:

The Clanguage supports binary, octal, decimal, and hexadecimal number systems. In each case, itis necessary
to assign some sort of special character to each numbering system to differentiate them. To denote a binary
number, use b at the end of the number (1101b). To denote an octal number, use the backslash character
(\o14). To denote a hexadecimal number, use the ox character sequence (ox34). Of course, decimal is the
default numbering system, and it requires no identifier.

To assign a hexadecimal value to a variable, you would do as shown here;

int x;
X = 0x20; /* put hex 20 (32 in decimal) into x
X = “0x207; /* put the ASCIIl character whose value is

hex 20 into x */

You must know the hexadecimal numbering system in order to know what numbers to assign. Refer to FAQ
XX.24 for detailed information on the hexadecimal numbering system.

Cross Reference:

XX.24: What is hexadecimal?

Chapter XX ¢ Miscellaneous 377

XX.21: How do you assign an octal value to a number?
Answer:

Assigning an octal value to a variable is as easy as assigning a hexadecimal value to a variable, except that you
need to know the octal numbering system in order to know which numbers to assign.

int x;
X = \033; /* put octal 33 (decimal 27) into x */
X = “\033~; /* put the ASCII character whose value is

octal 33 into x */

Refer to FAQ XX.23 for detailed information on the octal numbering system.

Cross Reference:

XX.23: What is octal?

XX.22: What is binary?
Answer:

The binary numbering system is the lowest common denominator in computing. Binary is base 2. Do you
remember being taught different numbering systems in elementary or high school? In one of my math classes
in grade school, I was taught base 6. You count 1, 2, 3, 4, 5, then 10, 11, 12, 13, 14, 15, then 20, and so
on. At least that’s the way | was taught. In truth, you should count 0, 1, 2, 3, 4,5, then 10, 11, 12, 13, 14,
15, and so on. By starting with 0, it becomes slightly easier to see the groupings of six digits—hence the six
in base 6. Notice that you count from 0 to the number that is one less than the base (you count from 0 to
5 because 6 is the base). After you have counted to 5, you move to two decimal places. If you think about
it, our base 10 (decimal) system is similar—you count up to one less than the base (9), and then you go to
two digits and resume counting.

In computers, the numbering system is base 2—binary. With base 2, you count 0, 1, then 10, 11, then 100,
101, 110, 111, then 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, and so on. Contrast base 2 with base
6; in base 2, you count from 0 to 1 before going to two decimal places.

Of course, the next question is “Why isbase 2 used?” The reason isthe transistor. The transistor iswhat makes
modern-day computers possible. A transistor is like a light switch. A light switch has two positions (or states),
on and off. So does a transistor. You could also say that off equals 0, and on equals 1. By doing so, you can
count from 0 to 1 using a transistor (or a light switch if you want). It doesn’t seem as though you can do any
serious computing with only two numbers (0 and 1), but we’re not finished yet. Suppose that you had a light
switch panel that contained four light switches. Although each switch still has only two states, the four
switches, when treated in combination, can have 16 unique positions, or 2* (four switches, two states each).
Therefore, you can count from 0 to 15 with just four switches, as shown in Table XX.22.

378

C Programming: Just the FAQs

Table XX.22. Binary counting.

Switches Decimal Value Power
0 0
1 1 20
10 2 2!
11 3

100 4 2?

101 5

110 6

111 7

1000 8 28

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

The table demonstrates three important points: (1) By placing the switches side by side, you can count with
them—up to 15 in this case (16 total counts); (2) You can consider each switch asa decimal place, or rather
a binary place, just as you can with the decimal system; (3) When each switch is considered to represent a
binary place, that switch also happens to be a power of two (2°, 2, 22, 2 and so on).

Further, notice that in the table where a power of two is shown, the count had to add another binary place.
This is the same as the decimal system, in which each time you increase another decimal place, that new
decimal place isa power of 10 (1 =10° 10=10", 100 = 10 and so on). Knowing this, you can convert binary
numbers to decimal with minimal effort. For example, the binary number 10111 would be (1~ 24+ (0~

25 +(17 2+ (17 28+ (1" 29, which equals (16 + 0 + 4 + 2 + 1), or 23 in decimal. A much larger binary
number, 10 1110 1011, wouldbe (1~ 29+ (0" 25)+ (1" 2)+ (1~ 25+(1 25+ (0" 29+ (1" 2%+
0" 2H)+(@1" 2H+ (1" 29, which equals (512 +0+ 128+ 64 + 32 +0+4 +2 + 1), or 743 in decimal.

So what does all this nonsense get us? In the realm of computers, there are bits, nibbles, and bytes. A nibble
is four bits, and a byte is eight bits. Do you know what a bit is? It’s a transistor. Therefore, a byte is eight
transistors, side by side, just like the four switches in Table XX.22. Remember that if you had four switches
(or transistors) grouped together, you could count to 24, or 16. You could have called that a nibble of switches.
If a nibble is four transistors grouped together, a byte is eight transistors grouped together. With eight
transistors, you can count to 28, or 256. Looking at it another way, this means that a byte (with eight
transistors) can contain 256 unique numbers (from 0 to 255). Continue this a little further. The Intel 386,
486, and Pentium processors are called 32-bit processors. This means that each operation taken by the Intel
chipis 32 bits wide, or 32 transistors wide. Thirty-two transistors, or bits, in parallel is 2%2, or 4,294,967,296.
That’s more than 4 billion unique humbers!

Chapter XX ¢ Miscellaneous 379

Of course, this description does not explain how a computer uses those numbers to produce the fantastic
computing power that occurs, but it does explain why and how the binary numbering system is used by the
computer.

Cross Reference:

XX.23: What is octal?
XX.24: What is hexadecimal?

XX.23: What is octal?
Answer:

Octal is base 8. Oh, no, another numbering system? Unfortunately, yes. But there is no need to describe base
8 to the level of detail that was described for base 2. To count in octal, you count 0, 1, 2, 3, 4, 5, 6, 7, 10,
11, 12, 13, and so on. The following two lines count in base 8 and in base 10 side by side for comparison
purposes (base 10 is on top):

0,1, 2,3, 4,5,6,7, 8, 9,10, 11, 12, 13, 14, 15, 16
0,1, 2, 3, 4,5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20

Notice that in base 8 (on bottom), you had to increase to two decimal, | mean octal, places after you reached
7. The second octal place is of course 81 (which is equal to 8 in the decimal system). If you were to continue
counting to three octal places (100 in octal), that would be 82, or 64 in decimal. Therefore, 100 in octal is
equal to 64 in decimal.

Octal is not as frequently used these days as it once was. The major reason is that today’s computers are
8-, 16-, 32-, or 64-bit processors, and the numbering system that best fits those is binary or hexadecimal (see
FAQ XX.24 for more information on the hexadecimal numbering system).

The C language supports octal character sets, which are designated by the backslash character (\). For
example, it is not uncommon to see C code that has the following statement in it:

if(x == “\007”) break;

The\oo7 happens to also be decimal seven; the code is checking for the terminal beep character in this case.
Another common number denoted in octal is \033, which is the Escape character (it’s usually seen in code
as \033). However, today you won’t see much of octal—hexadecimal is where it’s at.

Cross Reference:

XX.22: What is binary?
XX.24: What is hexadecimal?

380

C Programming: Just the FAQs

XX.24: What 15 hexadecimal?
Answer:

Hexadecimal is the base 16 numbering system. It is the most commonly used numbering system in
computers. In hexadecimal, or hex for short, you count0, 1, 2, 3,4,5,6,7,8,9,A,B,C, D, E, F, 10, 11,
12,13, 14,15, 16, 17,18, 19, 1A, 1B, 1C, 1D, 1E, 1F, and so on. Don’t get too bothered by the letters—
they are merely single-digit placeholders that represent (in decimal) 10 through 15. Remember the rule of
counting in different bases—count from 0 to the number that is one less than the base. In this case, it is 15.
Because our Western numbers do not contain single-digit values representing numbers above 9, we use A,
B, C, D, E, and F to represent 10 to 15. After reaching 15, or F, you can move to two decimal, rather
hexadecimal, places—in other words, 10. As with octal and binary, compare hex counting to decimal
counting (once again, decimal is on top):

1, 2, 3, 4, 5, 6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16, ...
1, 2, 3, 4, 5,6, 7,8,9, A, B, C, D, E, F, 10, ...

Note that “10”, what we historically have called ten, in decimal is equal to “A” in hex. As with the previously
discussed numbering systems, when you increase to two or three or more hexadecimal places, you are
increasing by a power of 16. 1 is 16°, 16 is 16, 256 is 162, 4096 is 16°, and so on. Therefore, a hex number
such as 3F can be converted to decimal by taking (3~ 16%) +(F~ 16°), whichequals (48 + 15), or 63 in decimal
(remember, F is 15 in decimal). A number such as 13Fis (1~ 162 + (3~ 16%) + (F~ 16°), which equals (256
+48 + 15), or 319 in decimal. In C source code, you will see these numbers shown as 0x3F or 0x13F. The
“0x” is used to show the compiler (and the programmer) that the number being referenced should be treated
asahexadecimal number. Otherwise, how could you tell whether the value “16” were decimal or hex (or even
octal, for that matter)?

A slight modification can be made to Table XX.22 by adding hex counting to that table (see Table XX.24).

Table XX.24. Binary, decimal, hexadecimal conversion table.

Binary Decimal Value Binary Power

Hex Power

T
2

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011

20 16°

21

22

23

© 00O N O 0o b W N -, O

=
o
W > © 0 N O O b W N - O

[EnN
[N

Chapter XX ¢ Miscellaneous 381

Binary Decimal Value Binary Power Hex Hex Power
1100 12 C
1101 13 D
1110 14 E
1111 15 F
1 0000 16 24 10 16!

I added one more count at the bottom, taking the total to decimal 16. By comparing binary to decimal to
hex, you can see that, for example, ten is “1010” in binary, “10” in decimal, and “A” in hex. In the last line,
sixteen is “1 0000 or “10000” in binary, “16” in decimal, and “10” in hex. What does all this mean? Because
today’s 16-, 32-, and 64-bit processors all have bit widths that happen to be multiples of 16, hexadecimal
fits very nicely as the numbering system for those types of computers.

Another added quality is that hex is also a multiple of binary. Note that the last line of Table XX.24 shows
the binary value broken into two sections (1 0000). Four binary digits (or four bits) can count up to 15 (16
unique numbers when you include zero). Four bits also equals a nibble. By looking at the table, you can see
that one digit of hex can also count up to 15 (16 unique numbers because we include zero). Therefore, one
hex digit can represent four binary digits. A good example is (decimal) 15 and 16. Fifteen isshown as 1111
in binary, the highest number four binary digits can count. It isalso shown as F, the highest number one hex
digit can count. After you go to 16, it takes five binary digits (1 0000) and two hex digits (10). The following
lines convert the same numbers used earlier (0x3F and 0x13F) to binary:

3F 111111

13F 100111111
If you replace the leading spaces with zeros and break the binary digits into groups of four, it might become
a little clearer:

03F 000111111

13F 100111111
Youare not required to break binary numbersinto groups of four—it’s simply easier to count when you know
that every four binary digits equal one hex digit. To prove that the numbers are equal, I'll convert the binary
representations to decimal (because the hex values were already converted in a previous paragraph). 111111
wouldbe (1~ 25)+ (17" 29+(1" 25+(1"° 29+ (1~ 2)+ (1~ 2°), whichequals (32+16+8+4+2+
1), or 63 in decimal, just as before. The number 1 0011 1111 would be + (1~ 28)+ (0~ 27)+ (0~ 2%) +
L 2+@Q"2H+@1" 2+ 2+ 29+ (1" 2°, which equals (256 + 32+ 16 +8 + 4 + 2 + 1),
or 319 in decimal. Hexadecimal and binary fit together like hand and glove.

Cross Reference:

XX.22: What is binary?
XX.23: What is octal?

382

C Programming: Just the FAQs

XX.25: What are escape characters?
Answer:

Escape characters are characters designed to perform a command or task instead of being printed on the
computer screen. For example, an escape character could be a character sent toa device that tells the computer
screen to draw the next line in red rather than the normal white. The escape character is sent to the device
that draws the red line along with the actual characters the device is supposed to draw in red. So how does
the device know that the character is an escape character? Typically, the Escape key (decimal 27, octal /033)
issent just before the escape character so that the device knows that an escape character is next to arrive. After
the device has the escape character, it acts on the command that the escape character represents, then resumes
normal operation—taking characters and printing them on-screen. Because it usually takes two or more
characters to pull off the desired command (the Escape key plus the command character itself), this is often
referred to as an escape sequence.

I know that this sounds confusing (the Escape key, followed by the escape character), but that is precisely
why these are called escape characters. The Escape key is used to inform whoever wants to know that the next
character isa command, not an ordinary character. The escape character itself (the one that comes after the
Escape key) can be any character—it could even be another Escape key. The actual character that represents
the desired command to occur is up to the program that is reading these characters and waiting for such
commands.

An example of thisisthe ANSI.SYS device driver. Thisdriver, loaded in your CONFIG.SYS file, intercepted
all characters that were printed on-screen and processed these characters for escape sequences. The purpose
of ANSI.SYS was to provide a way to print colored, underlined, or blinking text, or to perform higher-level
commands such as clear the screen. The advantage to ANSI.SYS was that you didn’t have to know what type
of monitor or display card you had—ANSI.SYS took care of that for you. All you had to do was embed the
escape charactersinto the appropriate places in the character strings you displayed on-screen, and ANSI.SYS
would take care of the rest. For example, if you printed “\033H4Hello there” ANSI.SYSwould print “Hello
there” on-screen in red. ANSI.SYS would see the Escape key (\033), read the command (which in this case
is H4—oprint remaining characters in red), and print what was left (“Hello there™).

Before ANSI.SYS, escape characters were used in the old centralized computing environments (one
mainframe computer with a bunch of dumb terminals connected to it). Back in those days, the terminals
had no computing power of their own and could not display graphics, and many were monochrome, unable
todisplay color. However, each monitor did have a series of escape characters that the mainframe could send
to the monitor to make it do such things as clear the screen, underline, or blink. Programmers would embed
the escape characters into their character strings just as you do with ANSI.SYS, and the monitor would
perform the desired command.

Today, this type of escape sequence usage has all but died out. On the other hand, many other types of
character sequences could be described as escape characters that have been around for just as long, and they
are still used heavily today. For example, in the section where I describe how to assign an octal or a hex value
to a variable, I am using an escape character (the pair “Ox” in the case of hex, and the single \ character in
octal). Note that these characters do not actually use the Escape key as the “hey, here comes something
special” notifier, but nonetheless they are used to denote something special about what is to immediately
follow. In fact, the backslash character (\) is used quite frequently as an escape character. In C, you use \n
to tell the computer to “perform a linefeed operation here.” You can use \t to perform a tab advance, and
so on.

Chapter XX ¢ Miscellaneous 383

Cross Reference:

XX.23: What is octal?
XX.24: What is hexadecimal?

