
Chapter III • Sorting and Searching Data 31

III
Sorting and Searching

Data

CHAPTER

Few problems in computer science have been studied as much as sorting. Many good
books are available that cover the subject in great depth. This chapter serves merely as an
introduction, with an emphasis on practical applications in C.

Sorting
Five basic kinds of sorting algorithms are available to the programmer:

◆ Insertion sorts

◆ Exchange sorts

◆ Selection sorts

◆ Merge sorts

◆ Distribution sorts

An easy way to visualize how each sorting algorithm works is to think about how to sort
a shuffled deck of cards lying on the table using each method. The cards are to be sorted
by suit (clubs, diamonds, hearts, and spades) as well as by rank (2 through ace). You might
have seen some of these algorithms in action at your last bridge game.

In an insertion sort, you pick up the cards one at a time, starting with the top card in the
pile, and insert them into the correct position in your hand. When you have picked up
all the cards, they are sorted.

C Programming: Just the FAQs32

In an exchange sort, you pick up the top two cards. If the one on the left belongs after the one on the right,
you exchange the two cards’ positions. Then you pick up the next card and perform the compare on the two
rightmost cards and (if needed) exchange their positions. You repeat the process until all the cards are in your
hand. If you didn’t have to exchange any cards, the deck is sorted. Otherwise, you put down the deck and
repeat the entire procedure until the deck is sorted.

In a selection sort, you search the deck for the lowest card and pick it up. You repeat the process until you
are holding all the cards.

To perform a merge sort, you deal the deck into 52 piles of one card each. Because each pile is ordered
(remember, there’s only one card in it), if you merge adjacent piles, keeping cards in order, you will have 26
ordered piles of 2 cards each. You repeat so that you have 13 piles of 4 cards, then 7 piles (6 piles of 8 cards
and 1 pile of 4 cards), until you have 1 pile of 52 cards.

In a distribution (or radix) sort, you deal the cards into 13 piles, placing each rank on its own pile. You then
pick up all the piles in order and deal the cards into 4 piles, placing each suit on its own pile. You put the
four piles together, and the deck is sorted.

There are several terms you should be aware of when examining sorting algorithms. The first is natural.
A sort is said to be natural if it works faster (does less work) on data that is already sorted, and works slower
(does more work) on data that is more mixed up. It is important to know whether a sort is natural if the data
you’re working with is already close to being sorted.

A sort is said to be stable if it preserves the ordering of data that are considered equal by the algorithm.
Consider the following list:

Mary Jones
Mary Smith
Tom Jones
Susie Queue

If this list is sorted by last name using a stable sort, “Mary Jones” will remain before “Tom Jones” in the sorted
list because they have the same last name. A stable sort can be used to sort data on a primary and secondary
key, such as first and last names (in other words, sorted primarily by last name, but sorted by first name for
entries with the same last name). This action is accomplished by sorting first on the secondary key, then on
the primary key with a stable sort.

A sort that operates on data kept entirely in RAM is an internal sort. If a sort operates on data on disk, tape,
or other secondary storage, it is called an external sort.

Searching
Searching algorithms have been studied nearly as much as sorting algorithms. The two are related in that
many searching algorithms rely on the ordering of the data being searched. There are four basic kinds of
searching algorithms:

◆ Sequential searching

◆ Comparison searching

◆ Radix searching

◆ Hashing

Chapter III • Sorting and Searching Data 33

Each of these methods can be described using the same deck of cards example that was used for sorting.

In sequential searching, you go through the deck from top to bottom, looking at each card until you find
the card you are looking for.

In comparison searching (also called binary searching), you start with an already sorted deck. You pick a card
from the exact middle of the deck and compare it to the card you want. If it matches, you’re done. Otherwise,
if it’s lower, you try the same search again in the first half of the deck. If it’s higher, you try again in the second
half of the deck.

In radix searching, you deal the deck into the 13 piles as described in radix sorting. To find a desired card,
you choose the pile corresponding to the desired rank and search for the card you want in that pile using any
search method. Or you could deal the deck into 4 piles based on suit as described in radix sorting. You could
then pick the pile according to the desired suit and search there for the card you want.

In hashing, you make space for some number of piles on the table, and you choose a function that maps cards
into a particular pile based on rank and suit (called a hash function). You then deal all the cards into the piles,
using the hash function to decide where to put each card. To find a desired card, you use the hash function
to find out which pile the desired card should be in. Then you search for the card in that pile.

For instance, you might make 16 piles and pick a hash function like pile = rank + suit. If rank is a card’s
rank treated as a number (ace = 1, 2 = 2, all the way up to king = 13), and suit is a card’s suit treated as a
number (clubs = 0, diamonds = 1, hearts = 2, spades = 3), then for each card you can compute a pile number
that will be from 1 to 16, indicating which pile the card belongs in. This technique sounds crazy, but it’s a
very powerful searching method. All sorts of programs, from compression programs (such as Stacker) to disk
caching programs (such as SmartDrive) use hashing to speed up searches for data.

Performance of Sorting or Searching
One of the chief concerns in searching and sorting is speed. Often, this concern is misguided, because the
sort or search takes negligible time compared to the rest of the program. For most sorting and searching
applications, you should use the easiest method available (see FAQs III.1 and III.4). If you later find that the
program is too slow because of the searching or sorting algorithm used, you can substitute another method
easily. By starting with a simple method, you haven’t invested much time and effort on code that has to be
replaced.

One measure of the speed of a sorting or searching algorithm is the number of operations that must be
performed in the best, average, and worst cases (sometimes called the algorithm’s complexity). This is
described by a mathematical expression based on the number of elements in the data set to be sorted or
searched. This expression shows how fast the execution time of the algorithm grows as the number of
elements increases. It does not tell how fast the algorithm is for a given size data set, because that rate depends
on the exact implementation and hardware used to run the program.

The fastest algorithm is one whose complexity is O(1) (which is read as “order 1”). This means that the
number of operations is not related to the number of elements in the data set. Another common complexity
for algorithms is O(N) (N is commonly used to refer to the number of elements in the data set). This means
that the number of operations is directly related to the number of elements in the data set. An algorithm with
complexity O(log N) is somewhere between the two in speed. The O(log N) means that the number of
operations is related to the logarithm of the number of elements in the data set.

C Programming: Just the FAQs34

NOTE
If you’re unfamiliar with the term, you can think of a log N as the number of digits needed to write
the number N. Thus, the log 34 is 2, and the log 900 is 3 (actually, log 10 is 2 and log 100 is 3—
log 34 is a number between 2 and 3).

If you’re still with me, I’ll add another concept. A logarithm has a particular base. The logarithms
described in the preceding paragraph are base 10 logarithms (written as log10 N), meaning that
if N gets 10 times as big, log N gets bigger by 1. The base can be any number. If you are comparing
two algorithms, both of which have complexity O(log N), the one with the larger base would be
faster. No matter what the base is, log N is always a smaller number than N.

An algorithm with complexity O(N log N) (N times log N) is slower than one of complexity O(N), and an
algorithm of complexity O(N2) is slower still. So why don’t they just come up with one algorithm with the
lowest complexity number and use only that one? Because the complexity number only describes how the
program will slow down as N gets larger.

The complexity does not indicate which algorithm is faster for any particular value of N. That depends on
many factors, including the type of data in the set, the language the algorithm is written in, and the machine
and compiler used. What the complexity number does communicate is that as N gets bigger, there will be
a point at which an algorithm with a lower order complexity will be faster than one of a higher order
complexity.

Table 3.1 shows the complexity of all the algorithms listed in this chapter. The best and worst cases are given
for the sorting routines. Depending on the original order of the data, the performance of these algorithms
will vary between best and worst case. The average case is for randomly ordered data. The average case
complexity for searching algorithms is given. The best case for all searching algorithms (which is if the data
happens to be in the first place searched) is obviously O(1). The worst case (which is if the data being searching
for doesn’t exist) is generally the same as the average case.

Table 3.1. The relative complexity of all the algorithms presented in this chapter.
Algorithm Best Average Worst

Quick sort O(N log N) O(N log N) O(N2)

Merge sort O(N) O(N log N) O(N log N)

Radix sort O(N) O(N) O(N)

Linear search O(N)

Binary search O(log N)

Hashing O(N/M)*

Digital trie O(1)**

 * M is the size of hash table
** Actually, equivalent to a hash table with 232 entries

Chapter III • Sorting and Searching Data 35

To illustrate the difference between the complexity of an algorithm and its actual running time, Table 3.2
shows execution time for all the sample programs listed in this chapter. Each program was compiled with
the GNU C Compiler (gcc) Version 2.6.0 under the Linux operating system on a 90 MHz Pentium
computer. Different computer systems should provide execution times that are proportional to these times.

Table 3.2. The execution times of all the programs presented in this chapter.
Program Algorithm 2000 4000 6000 8000 10000

3_1 qsort() 0.02 0.05 0.07 0.11 0.13

3_2a quick sort 0.02 0.06 0.13 0.18 0.20

3_2b merge sort 0.03 0.08 0.14 0.18 0.26

3_2c radix sort 0.07 0.15 0.23 0.30 0.39

3_4 bsearch() 0.37 0.39 0.39 0.40 0.41

3_5 binary search 0.32 0.34 0.34 0.36 0.36

3_6 linear search 9.67 20.68 28.71 36.31 45.51

3_7 trie search 0.27 0.28 0.29 0.29 0.30

3_8 hash search 0.25 0.26 0.28 0.29 0.28

NOTE
All times are in seconds. Times are normalized, by counting only the time for the program to
perform the sort or search.

The 2000–10000 columns indicate the number of elements in the data set to be sorted or searched.
Data elements were words chosen at random from the file /usr/man/man1/gcc.1 (documentation
for the GNU C compiler).

For the search algorithms, the data searched for were words chosen at random from the file /usr/
man/man1/g++.1 (documentation for the GNU C++ compiler).

qsort() and bsearch() are standard library implementations of quick sort and binary search,
respectively. The rest of the programs are developed from scratch in this chapter.

This information should give you a taste of what issues are involved in deciding which algorithm is
appropriate for sorting and searching in different situations. The book The Art of Computer Programming,
Volume 3, Sorting and Searching, by Donald E. Knuth, is entirely devoted to algorithms for sorting and
searching, with much more information on complexity and complexity theory as well as many more
algorithms than are described here.

C Programming: Just the FAQs36

Some Code to Get Started With
This chapter includes several code examples that are complete enough to actually compile and run. To avoid
duplicating the code that is common to several examples, the code is shown at the end of this chapter.

III.1: What is the easiest sorting method to use?
Answer:

The answer is the standard library function qsort(). It’s the easiest sort by far for several reasons:

It is already written.

It is already debugged.

It has been optimized as much as possible (usually).

The algorithm used by qsort() is generally the quick sort algorithm, developed by C. A. R. Hoare in 1962.
Here is the prototype for qsort():

void qsort(void *buf, size_t num, size_t size,

 int (*comp)(const void *ele1, const void *ele2));

The qsort() function takes a pointer to an array of user-defined data (buf). The array has num elements in
it, and each element is size bytes long. Decisions about sort order are made by calling comp, which is a pointer
to a function that compares two elements of buf and returns a value that is less than, equal to, or greater than
0 according to whether the ele1 is less than, equal to, or greater than ele2.

For instance, say you want to sort an array of strings in alphabetical order. The array is terminated by a NULL
pointer. Listing III.1 shows the function sortStrings(), which sorts a NULL-terminated array of character
strings using the qsort() function. You can compile this example into a working program using the code
found at the end of this chapter.

Listing III.1. An example of using qsort().
 1: #include <stdlib.h>
 2:
 3: /*
 4: * This routine is used only by sortStrings(), to provide a
 5: * string comparison function to pass to qsort().
 6: */
 7: static int comp(const void *ele1, const void *ele2)
 8: {
 9: return strcmp(*(const char **) ele1,
10: *(const char **) ele2);
11: }
12:
13: /* Sort strings using the library function qsort() */
14: void sortStrings(const char *array[])
15: {
16: /* First, determine the length of the array */
17: int num;
18:

Chapter III • Sorting and Searching Data 37

19: for (num = 0; array[num]; num++)
20: ;
21: qsort(array, num, sizeof(*array), comp);
22: }

The for loop on lines 19 and 20 simply counts the number of elements in the array so that the count can
be passed to qsort(). The only “tricky” part about this code is the comp() function. Its sole purpose is to
bridge the gap between the types that qsort() passes to it (const void *) and the types expected by strcmp()
(const char *). Because qsort() works with pointers to elements, and the elements are themselves pointers,
the correct type to cast ele1 and ele2 to is const char **. The result of the cast is then dereferenced (by
putting the * in front of it) to get the const char * type that strcmp() expects.

Given that qsort() exists, why would a C programmer ever write another sort program? There are several
reasons. First, there are pathological cases in which qsort() performs very slowly and other algorithms
perform better. Second, some overhead is associated with qsort() because it is general purpose. For instance,
each comparison involves an indirect function call through the function pointer provided by the user. Also,
because the size of an element is a runtime parameter, the code to move elements in the array isn’t optimized
for a single size of element. If these performance considerations are important, writing a sort routine might
be worth it.

Besides the drawbacks mentioned, the qsort() implementation assumes that all the data is in one array. This
might be inconvenient or impossible given the size or nature of the data. Lastly, qsort() implementations
are usually not “stable” sorts.

Cross Reference:
III.2: What is the quickest sorting method to use?

III.3: How can I sort things that are too large to bring into memory?

III.7: How can I sort a linked list?

VII.1: What is indirection?

VII.2: How many levels of pointers can you have?

VII.5: What is a void pointer?

VII.6: When is a void pointer used?

III.2: What is the quickest sorting method to use?
Answer:

The answer depends on what you mean by quickest. For most sorting problems, it just doesn’t matter how
quick the sort is because it is done infrequently or other operations take significantly more time anyway. Even
in cases in which sorting speed is of the essence, there is no one answer. It depends on not only the size and
nature of the data, but also the likely order. No algorithm is best in all cases.

There are three sorting methods in this author’s “toolbox” that are all very fast and that are useful in different
situations. Those methods are quick sort, merge sort, and radix sort.

C Programming: Just the FAQs38

The Quick Sort
The quick sort algorithm is of the “divide and conquer” type. That means it works by reducing a sorting
problem into several easier sorting problems and solving each of them. A “dividing” value is chosen from the
input data, and the data is partitioned into three sets: elements that belong before the dividing value, the value
itself, and elements that come after the dividing value. The partitioning is performed by exchanging elements
that are in the first set but belong in the third with elements that are in the third set but belong in the first.
Elements that are equal to the dividing element can be put in any of the three sets—the algorithm will still
work properly.

After the three sets are formed, the middle set (the dividing element itself) is already sorted, so quick sort
is applied to the first and third sets, recursively. At some point, the set being sorting becomes too small for
quick sort. Obviously, a set of two or fewer elements cannot be divided into three sets. At this point, some
other sorting method is used. The cutoff point at which a different method of sorting is applied is up to the
person implementing the sort. This cutoff point can dramatically affect the efficiency of the sort, because
there are methods that are faster than quick sort for relatively small sets of data.

The string sorting example (from FAQ III.1) will be rewritten using a quick sort. Excuse the preprocessor
trickery, but the goal is to make the code readable and fast. Listing III.2a shows myQsort(), an implemen-
tation of the quick sort algorithm from scratch. You can compile this example into a working program using
the code at the end of this chapter.

The function myQsort() sorts an array of strings into ascending order. First it checks for the simplest cases.
On line 17 it checks for the case of zero or one element in the array, in which case it can return—the array
is already sorted. Line 19 checks for the case of an array of two elements, because this is too small an array
to be handled by the rest of the function. If there are two elements, either the array is sorted or the two
elements are exchanged to make the array sorted.

Line 28 selects the middle element of the array as the one to use to partition the data. It moves that element
to the beginning of the array and begins partitioning the data into two sets. Lines 37–39 find the first element
in the array that belongs in the second set, and lines 45–47 find the last element in the array that belongs
in the first set.

Line 49 checks whether the first element that belongs in the second set is after the last element that belongs
in the first set. If this is the case, all the elements in the first set come before the elements in the second set,
so the data are partitioned. Otherwise, the algorithm swaps the two elements so that they will be in the proper
set, and then continues.

After the array has been properly partitioned into two sets, line 55 puts the middle element back into its
proper place between the two sets, which turns out to be its correct position in the sorted array. Lines 57 and
58 sort each of the two sets by calling myQsort() recursively. When each set is sorted, the entire array is sorted.

Listing III.2a. An implementation of quick sort that doesn’t use the qsort() function.
 1: #include <stdlib.h>
 2:
 3: #define exchange(A, B, T) ((T) = (A), (A) = (B), \
 4: (B) = (T))
 5:

Chapter III • Sorting and Searching Data 39

 6: /* Sorts an array of strings using quick sort algorithm */
 7: static void myQsort(const char *array[], size_t num)
 8: {
 9: const char *temp;
10: size_t i, j;
11:
12: /*
13: * Check the simple cases first:
14: * If fewer than 2 elements, already sorted
15: * If exactly 2 elements, just swap them (if needed).
16: */
17: if (num < 2)
18: return;
19: else if (num == 2)
20: {
21: if (strcmp(array[0], array[1]) > 0)
22: exchange(array[0], array[1], temp);
23: }
24: /*
25: * Partition the array using the middle (num / 2)
26: * element as the dividing element.
27: */
28: exchange(array[0], array[num / 2], temp);
29: i = 1;
30: j = num;
31: for (; ;)
32: {
33: /*
34: * Sweep forward until an element is found that
35: * belongs in the second partition.
36: */
37: while (i < j && strcmp(array[i], array[0])
38: <= 0)
39: i++;
40: /*
41: * Then sweep backward until an element
42: * is found that belongs in the first
43: * partition.
44: */
45: while (i < j && strcmp(array[j - 1], array[0])
46: >= 0)
47: j--;
48: /* If no out-of-place elements, you’re done */
49: if (i >= j)
50: break;
51: /* Else, swap the two out-of-place elements */
52: exchange(array[i], array[j - 1], temp);
53: }
54: /* Restore dividing element */
55: exchange(array[0], array[i - 1], temp);
56: /* Now apply quick sort to each partition */
57: myQsort(array, i - 1);
58: myQsort(array + i, num - i);
59: }
60:
61: /* Sort strings using your own implementation of quick sort */
62: void sortStrings(const char *array[])

continues

C Programming: Just the FAQs40

63: {
64: /* First, determine the length of the array */
65: int num;
66:
67: for (num = 0; array[num]; num++)
68: ;
69: myQsort((void *) array, num);
70: }

The Merge Sort
The merge sort is a “divide and conquer” sort as well. It works by considering the data to be sorted as a
sequence of already-sorted lists (in the worst case, each list is one element long). Adjacent sorted lists are
merged into larger sorted lists until there is a single sorted list containing all the elements. The merge sort
is good at sorting lists and other data structures that are not in arrays, and it can be used to sort things that
don’t fit into memory. It also can be implemented as a stable sort. The merge sort was suggested by John von
Neumann in 1945!

Listing III.2b shows an implementation of the merge sort algorithm. To make things more interesting, the
strings will be put into a linked list structure rather than an array. In fact, the algorithm works better on data
that is organized as lists, because elements in an array cannot be merged in place (some extra storage is
required). You can compile this example into a working program using the code at the end of this chapter.
The code for (and a description of) the list_t type and the functions that operate on list_ts are also at the
end of this chapter.

There are four functions that together implement merge sort. The function split() takes a list of strings and
turns it into a list of lists of strings, in which each list of strings is sorted. For instance, if the original list was
(“the” “quick” “brown” “fox”), split() would return a list of three lists—(“the”), (“quick”), and (“brown”
“fox”)—because the strings “brown” and “fox” are already in the correct order. The algorithm would work
just as well if split() made lists of one element each, but splitting the list into already-sorted chunks makes
the algorithm natural by reducing the amount of work left to do if the list is nearly sorted already (see the
introduction to this chapter for a definition of natural sorts). In the listing, the loop on lines 14–24 keeps
processing as long as there are elements on the input list. Each time through the loop, line 16 makes a new
list, and the loop on lines 17–22 keeps moving elements from the input list onto this list as long as they are
in the correct order. When the loop runs out of elements on the input list or encounters two elements out
of order, line 23 appends the current list to the output list of lists.

The function merge() takes two lists that are already sorted and merges them into a single sorted list. The
loop on lines 37– 45 executes as long as there is something on both lists. The if statement on line 40 selects
the smaller first element of the two lists and moves it to the output list. When one of the lists becomes empty,
all the elements of the other list must be appended to the output list. Lines 46 and 47 concatenate the output
list with the empty list and the non-empty list to complete the merge.

The function mergePairs() takes a list of lists of strings and calls merge() on each pair of lists of strings,
replacing the original pair with the single merged list. The loop on lines 61–77 executes as long as there is
something in the input list. The if statement on line 63 checks whether there are at least two lists of strings
on the input list. If not, line 76 appends the odd list to the output list. If so, lines 65 and 66 remove the two

Listing III.2a. continued

Chapter III • Sorting and Searching Data 41

lists, which are merged on lines 68 and 69. The new list is appended to the output list on line 72, and all the
intermediate list nodes that were allocated are freed on lines 70, 71, and 73. Lines 72 and 73 remove the two
lists that were merged from the input list.

The last function is sortStrings(), which performs the merge sort on an array of strings. Lines 88 and 89
put the strings into a list. Line 90 calls split() to break up the original list of strings into a list of lists of strings.
The loop on lines 91 and 92 calls mergePairs() until there is only one list of strings on the list of lists of strings.
Line 93 checks to ensure that the list isn’t empty (which is the case if the array has 0 elements in it to begin
with) before removing the sorted list from the list of lists. Finally, lines 95 and 96 put the sorted strings back
into the array. Note that sortStrings() does not free all the memory if allocated.

Listing III.2b. An implementation of a merge sort.
 1: #include <stdlib.h>
 2: #include “list.h”
 3:
 4: /*
 5: * Splits a list of strings into a list of lists of strings
 6: * in which each list of strings is sorted.
 7: */
 8: static list_t split(list_t in)
 9: {
10: list_t out;
11: list_t *curr;
12: out.head = out.tail = NULL;
13:
14: while (in.head)
15: {
16: curr = newList();
17: do
18: {
19: appendNode(curr, removeHead(&in));
20: }
21: while (in.head && strcmp(curr->tail->u.str,
22: in.head->u.str) <= 0);
23: appendNode(&out, newNode(curr));
24: }
25: return out;
26: }
27:
28: /*
29: * Merge two sorted lists into a third sorted list,
30: * which is then returned.
31: */
32: static list_t merge(list_t first, list_t second)
33: {
34: list_t out;
35: out.head = out.tail = NULL;
36:
37: while (first.head && second.head)
38: {
39: listnode_t *temp;
40: if (strcmp(first.head->u.str,
41: second.head->u.str) <= 0)

continues

C Programming: Just the FAQs42

42: appendNode(&out, removeHead(&first));
43: else
44: appendNode(&out, removeHead(&second));
45: }
46: concatList(&out, &first);
47: concatList(&out, &second);
48: return out;
49: }
50:
51: /*
52: * Takes a list of lists of strings and merges each pair of
53: * lists into a single list. The resulting list has 1/2 as
54: * many lists as the original.
55: */
56: static list_t mergePairs(list_t in)
57: {
58: list_t out;
59: out.head = out.tail = NULL;
60:
61: while (in.head)
62: {
63: if (in.head->next)
64: {
65: list_t *first = in.head->u.list;
66: list_t *second =
67: in.head->next->u.list;
68: in.head->u.list = copyOf(merge(*first,
69: *second));
70: free(first);
71: free(second);
72: appendNode(&out, removeHead(&in));
73: free(removeHead(&in));
74: }
75: else
76: appendNode(&out, removeHead(&in));
77: }
78: return out;
79: }
80:
81: /* Sort strings using merge sort */
82: void sortStrings(const char *array[])
83: {
84: int i;
85: list_t out;
86: out.head = out.tail = NULL;
87:
88: for (i = 0; array[i]; i++)
89: appendNode(&out, newNode((void *) array[i]));
90: out = split(out);
91: while (out.head != out.tail)
92: out = mergePairs(out);
93: if (out.head)
94: out = *out.head->u.list;
95: for (i = 0; array[i]; i++)
96: array[i] = removeHead(&out)->u.str;
97: }

Listing III.2b. continued

Chapter III • Sorting and Searching Data 43

The Radix Sort
The radix sort shown in Listing III.2c takes a list of integers and puts each element on a smaller list, depending
on the value of its least significant byte. Then the small lists are concatenated, and the process is repeated for
each more significant byte until the list is sorted. The radix sort is simpler to implement on fixed-length data
such as ints, but it is illustrated here using strings. You can compile this example into a working program
using the code at the end of this chapter.

Two functions perform the radix sort. The function radixSort() performs one pass through the data,
performing a partial sort. Line 12 ensures that all the lists in table are empty. The loop on lines 13–24
executes as long as there is something on the input list. Lines 15–22 select which position in the table to put
the next string on, based on the value of the character in the string specified by whichByte. If the string has
fewer characters than whichByte calls for, the position is 0 (which ensures that the string “an” comes before
the string “and”). Finally, lines 25 and 26 concatenate all the elements of table into one big list in table[0].

The function sortStrings() sorts an array of strings by calling radixSort() several times to perform partial
sorts. Lines 39–46 create the original list of strings, keeping track of the length of the longest string (because
that’s how many times it needs to call radixSort()). Lines 47 and 48 call radixSort() for each byte in the
longest string in the list. Finally, lines 49 and 50 put all the strings in the sorted list back into the array. Note
that sortStrings() doesn’t free all the memory it allocates.

Listing III.2c. An implementation of a radix sort.
 1: #include <stdlib.h>
 2: #include <limits.h>
 3: #include <memory.h>
 4: #include “list.h”
 5:
 6: /* Partially sort list using radix sort */
 7: static list_t radixSort(list_t in, int whichByte)
 8: {
 9: int i;
10: list_t table[UCHAR_MAX + 1];
11:
12: memset(table, 0, sizeof(table));
13: while (in.head)
14: {
15: int len = strlen(in.head->u.str);
16: int pos;
17:
18: if (len > whichByte)
19: pos = (unsigned char)
20: in.head->u.str[whichByte];
21: else
22: pos = 0;
23: appendNode(&table[pos], removeHead(&in));
24: }
25: for (i = 1; i < UCHAR_MAX + 1; i++)
26: concatList(&table[0], &table[i]);
27: return table[0];
28: }
29:

continues

C Programming: Just the FAQs44

30: /* Sort strings using radix sort */
31: void sortStrings(const char *array[])
32: {
33: int i;
34: int len;
35: int maxLen = 0;
36: list_t list;
37:
38: list.head = list.tail = NULL;
39: for (i = 0; array[i]; i++)
40: {
41: appendNode(&list,
42: newNode((void *) array[i]));
43: len = strlen(array[i]);
44: if (len > maxLen)
45: maxLen = len;
46: }
47: for (i = maxLen - 1; i >= 0; i--)
48: list = radixSort(list, i);
49: for (i = 0; array[i]; i++)
50: array[i] = removeHead(&list)->u.str;
51: }

Cross Reference:
III.1: What is the easiest sorting method to use?

III.3: How can I sort things that are too large to bring into memory?

III.7: How can I sort a linked list?

III.3: How can I sort things that are too large to bring
into memory?

Answer:
A sorting program that sorts items that are on secondary storage (disk or tape) rather than primary storage
(memory) is called an external sort. Exactly how to sort large data depends on what is meant by “too large
to fit in memory.” If the items to be sorted are themselves too large to fit in memory (such as images), but
there aren’t many items, you can keep in memory only the sort key and a value indicating the data’s location
on disk. After the key/value pairs are sorted, the data is rearranged on disk into the correct order.

If “too large to fit in memory” means that there are too many items to fit into memory at one time, the data
can be sorted in groups that will fit into memory, and then the resulting files can be merged. A sort such as
a radix sort can also be used as an external sort, by making each bucket in the sort a file.

Even the quick sort can be an external sort. The data can be partitioned by writing it to two smaller files. When
the partitions are small enough to fit, they are sorted in memory and concatenated to form the sorted file.

Listing III.2c. continued

Chapter III • Sorting and Searching Data 45

The example in Listing III.3 is an external sort. It sorts data in groups of 10,000 strings and writes them to
files, which are then merged. If you compare this listing to the listing of the merge sort (Listing III.2b), you
will notice many similarities.

Any of the four sort programs introduced so far in this chapter can be used as the in-memory sort algorithm
(the makefile given at the end of the chapter specifies using qsort() as shown in Listing III.1). The functions
myfgets() and myfputs() simply handle inserting and removing the newline (‘\n’) characters at the ends
of lines. The openFile() function handles error conditions during the opening of files, and fileName()
generates temporary filenames.

The function split() reads in up to 10,000 lines from the input file on lines 69–74, sorts them in memory
on line 76, and writes them to a temporary file on lines 77–80. The function merge() takes two files that are
already sorted and merges them into a third file in exactly the same way that the merge() routine in Listing
III.2b merged two lists. The function mergePairs() goes through all the temporary files and calls merge()
to combine pairs of files into single files, just as mergePairs() in Listing III.2b combines lists. Finally, main()
invokes split() on the original file, then calls mergePairs() until all the files are combined into one big file.
It then replaces the original unsorted file with the new, sorted file.

Listing III.3. An example of an external sorting algorithm.
 1: #include <stdlib.h>
 2: #include <string.h>
 3: #include <stdio.h>
 4: #include <stdio.h>
 5:
 6: #define LINES_PER_FILE 10000
 7:
 8: /* Just like fgets(), but removes trailing ‘\n’. */
 9: char*
 10: myfgets(char *buf, size_t size, FILE *fp)
 11: {
 12: char *s = fgets(buf, size, fp);
 13: if (s)
 14: s[strlen(s) - 1] = ‘\0’;
 15: return s;
 16: }
 17:
 18: /* Just like fputs(), but adds trailing ‘\n’. */
 19: void
 20: myfputs(char *s, FILE *fp)
 21: {
 22: int n = strlen(s);
 23: s[n] = ‘\n’;
 24: fwrite(s, 1, n + 1, fp);
 25: s[n] = ‘\0’;
 26: }
 27:
 28: /* Just like fopen(), but prints message and dies if error. */
 29: FILE*
 30: openFile(const char *name, const char *mode)
 31: {
 32: FILE *fp = fopen(name, mode);
 33:
 34: if (fp == NULL)

continues

C Programming: Just the FAQs46

 35: {
 36: perror(name);
 37: exit(1);
 38: }
 39: return fp;
 40: }
 41:
 42: /* Takes a number and generates a filename from it. */
 43: const char*
 44: fileName(int n)
 45: {
 46: static char name[16];
 47:
 48: sprintf(name, “temp%d”, n);
 49: return name;
 50: }
 51:
 52: /*
 53: * Splits input file into sorted files with no more
 54: * than LINES_PER_FILE lines each.
 55: */
 56: int
 57: split(FILE *infp)
 58: {
 59: int nfiles = 0;
 60: int line;
 61:
 62: for (line = LINES_PER_FILE; line == LINES_PER_FILE;)
 63: {
 64: char *array[LINES_PER_FILE + 1];
 65: char buf[1024];
 66: int i;
 67: FILE *fp;
 68:
 69: for (line = 0; line < LINES_PER_FILE; line++)
 70: {
 71: if (!myfgets(buf, sizeof(buf), infp))
 72: break;
 72: array[line] = strdup(buf);
 74: }
 75: array[line] = NULL;
 76: sortStrings(array);
 77: fp = openFile(fileName(nfiles++), “w”);
 78: for (i = 0; i < line; i++)
 79: myfputs(array[i], fp);
 80: fclose(fp);
 81: }
 82: return nfiles;
 83: }
 84:
 85: /*
 86: * Merges two sorted input files into
 87: * one sorted output file.
 88: */
 89: void
 90: merge(FILE *outfp, FILE *fp1, FILE *fp2)

Listing III.3. continued

Chapter III • Sorting and Searching Data 47

 91: {
 92: char buf1[1024];
 93: char buf2[1024];
 94: char *first;
 95: char *second;
 96:
 97: first = myfgets(buf1, sizeof(buf1), fp1);
 98: second = myfgets(buf2, sizeof(buf2), fp2);
 99: while (first && second)
100: {
101: if (strcmp(first, second) > 0)
102: {
103: myfputs(second, outfp);
104: second = myfgets(buf2, sizeof(buf2),
105: fp2);
106: }
107: else
108: {
109: myfputs(first, outfp);
110: first = myfgets(buf1, sizeof(buf1),
111: fp1);
112: }
113: }
114: while (first)
115: {
116: myfputs(first, outfp);
117: first = myfgets(buf1, sizeof(buf1), fp1);
118: }
119: while (second)
120: {
121: myfputs(second, outfp);
122: second = myfgets(buf2, sizeof(buf2), fp2);
123: }
124: }
125:
126: /*
127: * Takes nfiles files and merges pairs of them.
128: * Returns new number of files.
129: */
130: int
131: mergePairs(int nfiles)
132: {
133: int i;
134: int out = 0;
135:
136: for (i = 0; i < nfiles - 1; i += 2)
137: {
138: FILE *temp;
139: FILE *fp1;
140: FILE *fp2;
141: const char *first;
142: const char *second;
143:
144: temp = openFile(“temp”, “w”);
145: fp1 = openFile(fileName(i), “r”);
146: fp2 = openFile(fileName(i + 1), “r”);
147: merge(temp, fp1, fp2);
148: fclose(fp1);

continues

C Programming: Just the FAQs48

149: fclose(fp2);
150: fclose(temp);
151: unlink(fileName(i));
152: unlink(fileName(i + 1));
153: rename(“temp”, fileName(out++));
154: }
155: if (i < nfiles)
156: {
157: char *tmp = strdup(fileName(i));
158: rename(tmp, fileName(out++));
159: free(tmp);
160: }
161: return out;
162: }
163:
164: int
165: main(int argc, char **argv)
166: {
167: char buf2[1024];
168: int nfiles;
169: int line;
170: int in;
171: int out;
172: FILE *infp;
173:
174: if (argc != 2)
175: {
176: fprintf(stderr, “usage: %s file\n”, argv[0]);
177: exit(1);
178: }
179: infp = openFile(argv[1], “r”);
180: nfiles = split(infp);
181: fclose(infp);
182: while (nfiles > 1)
183: nfiles = mergePairs(nfiles);
184: rename(fileName(0), argv[1]);
185: return 0;
186: }

Cross Reference:
III.1: What is the easiest sorting method to use?

III.2: What is the quickest sorting method to use?

III.7: How can I sort a linked list?

III.4: What is the easiest searching method to use?
Answer:

Just as qsort() was the easiest sorting method, because it is part of the standard library, bsearch() is the
easiest searching method to use.

Listing III.3. continued

Chapter III • Sorting and Searching Data 49

Following is the prototype for bsearch():

void *bsearch(const void *key, const void *buf, size_t num, size_t size,

 int (*comp)(const void *, const void *));

The bsearch() function performs a binary search on an array of sorted data elements. A binary search is
another “divide and conquer” algorithm. The key is compared with the middle element of the array. If it is
equal, the search is done. If it is less than the middle element, the item searched for must be in the first half
of the array, so a binary search is performed on just the first half of the array. If the key is greater than the
middle element, the item searched for must be in the second half of the array, so a binary search is performed
on just the second half of the array. Listing III.4a shows a simple function that calls the bsearch() function.
This listing borrows the function comp() from Listing III.1, which used qsort(). Listing III.4b shows a
binary search, performed without calling bsearch(), for a string in a sorted array of strings. You can make
both examples into working programs by combining them with code at the end of this chapter.

Listing III.4a. An example of how to use bsearch().
 1: #include <stdlib.h>
 2:
 3: static int comp(const void *ele1, const void *ele2)
 4: {
 5: return strcmp(*(const char **) ele1,
 6: *(const char **) ele2);
 7: }
 8:
 9: const char *search(const char *key, const char **array,
10: size_t num)
11: {
12: char **p = bsearch(&key, array, num,
13: sizeof(*array), comp);
14: return p ? *p : NULL;
15: }

Listing III.4b. An implementation of a binary search.
 1: #include <stdlib.h>
 2:
 3: const char *search(const char *key, const char **array,
 4: size_t num)
 5: {
 6: int low = 0;
 7: int high = num - 1;
 8:
 9: while (low <= high)
10: {
11: int mid = (low + high) / 2;
12: int n = strcmp(key, array[mid]);
13:
14: if (n < 0)
15: high = mid - 1;
16: else if (n > 0)
17: low = mid + 1;

continues

C Programming: Just the FAQs50

18: else
19: return array[mid];
20: }
21: return 0;
22: }

Another simple searching method is a linear search. A linear search is not as fast as bsearch() for searching
among a large number of items, but it is adequate for many purposes. A linear search might be the only
method available, if the data isn’t sorted or can’t be accessed randomly. A linear search starts at the beginning
and sequentially compares the key to each element in the data set. Listing III.4c shows a linear search. As with
all the examples in this chapter, you can make it into a working program by combining it with code at the
end of the chapter.

Listing III.4c. An implementation of linear searching.
 1: #include <stdlib.h>
 2:
 3: const char *search(const char *key, const char **array,
 4: size_t num)
 5: {
 6: int i;
 7:
 8: for (i = 0; i < num; i++)
 9: {
10: if (strcmp(key, array[i]) == 0)
11: return array[i];
12: }
13: return 0;
14: }

Cross Reference:
III.5: What is the quickest searching method to use?

III.6: What is hashing?

III.8: How can I search for data in a linked list?

III.5: What is the quickest searching method to use?
Answer:

A binary search, such as bsearch() performs, is much faster than a linear search. A hashing algorithm can
provide even faster searching. One particularly interesting and fast method for searching is to keep the data
in a “digital trie.” A digital trie offers the prospect of being able to search for an item in essentially a constant
amount of time, independent of how many items are in the data set.

Listing III.4b. continued

Chapter III • Sorting and Searching Data 51

A digital trie combines aspects of binary searching, radix searching, and hashing. The term “digital trie” refers
to the data structure used to hold the items to be searched. It is a multilevel data structure that branches N
ways at each level (in the example that follows, each level branches from 0 to 16 ways). The subject of treelike
data structures and searching is too broad to describe fully here, but a good book on data structures or
algorithms can teach you the concepts involved.

Listing III.5 shows a program implementing digital trie searching. You can combine this example with code
at the end of the chapter to produce a working program. The concept is not too hard. Suppose that you use
a hash function that maps to a full 32-bit integer. The hash value can also be considered to be a concatenation
of eight 4-bit hash values. You can use the first 4-bit hash value to index into a 16-entry hash table.

Naturally, there will be many collisions, with only 16 entries. Collisions are resolved by having the table entry
point to a second 16-entry hash table, in which the next 4-bit hash value is used as an index.

The tree of hash tables can be up to eight levels deep, after which you run out of hash values and have to search
through all the entries that collided. However, such a collision should be very rare because it occurs only when
all 32 bits of the hash value are identical, so most searches require only one comparison.

The binary searching aspect of the digital trie is that it is organized as a 16-way tree that is traversed to find
the data. The radix search aspect is that successive 4-bit chunks of the hash value are examined at each level
in the tree. The hashing aspect is that it is conceptually a hash table with 232 entries.

Listing III.5. An implementation of digital trie searching.
 1: #include <stdlib.h>
 2: #include <string.h>
 3: #include “list.h”
 4: #include “hash.h”
 5:
 6: /*
 7: * NOTE: This code makes several assumptions about the
 8: * compiler and machine it is run on. It assumes that
 9: *
 10: * 1. The value NULL consists of all “0” bits.
 11: *
 12: * If not, the calloc() call must be changed to
 13: * explicitly initialize the pointers allocated.
 14: *
 15: * 2. An unsigned and a pointer are the same size.
 16: *
 17: * If not, the use of a union might be incorrect, because
 18: * it is assumed that the least significant bit of the
 19: * pointer and unsigned members of the union are the
 20: * same bit.
 21: *
 22: * 3. The least significant bit of a valid pointer
 23: * to an object allocated on the heap is always 0.
 24: *
 25: * If not, that bit can’t be used as a flag to determine
 26: * what type of data the union really holds.
 27: */
 28:
 29: /* number of bits examined at each level of the trie */

continues

C Programming: Just the FAQs52

 30: #define TRIE_BITS 4
 31:
 32: /* number of subtries at each level of the trie */
 33: #define TRIE_FANOUT (1 << TRIE_BITS)
 34:
 35: /* mask to get lowest TRIE_BITS bits of the hash */
 36: #define TRIE_MASK (TRIE_FANOUT - 1)
 37:
 38: /*
 39: * A trie can be either a linked list of elements or
 40: * a pointer to an array of TRIE_FANOUT tries. The num
 41: * element is used to test whether the pointer is even
 42: * or odd.
 43: */
 44: typedef union trie_u {
 45: unsigned num;
 46: listnode_t *list; /* if “num” is even */
 47: union trie_u *node; /* if “num” is odd */
 48: } trie_t;
 49:
 50: /*
 51: * Inserts an element into a trie and returns the resulting
 52: * new trie. For internal use by trieInsert() only.
 53: */
 54: static trie_t eleInsert(trie_t t, listnode_t *ele, unsigned h,
 55: int depth)
 56: {
 57: /*
 58: * If the trie is an array of tries, insert the
 59: * element into the proper subtrie.
 60: */
 61: if (t.num & 1)
 62: {
 63: /*
 64: * nxtNode is used to hold the pointer into
 65: * the array. The reason for using a trie
 66: * as a temporary instead of a pointer is
 67: * it’s easier to remove the “odd” flag.
 68: */
 69: trie_t nxtNode = t;
 70:
 71: nxtNode.num &= ~1;
 72: nxtNode.node += (h >> depth) & TRIE_MASK;
 73: *nxtNode.node =
 74: eleInsert(*nxtNode.node,
 75: ele, h, depth + TRIE_BITS);
 76: }
 77: /*
 78: * Since t wasn’t an array of tries, it must be a
 79: * list of elements. If it is empty, just add this
 80: * element.
 81: */
 82: else if (t.list == NULL)
 83: t.list = ele;
 84: /*
 85: * Since the list is not empty, check whether the
 86: * element belongs on this list or whether you should

Listing III.5. continued

Chapter III • Sorting and Searching Data 53

 87: * make several lists in an array of subtries.
 88: */
 89: else if (h == hash(t.list->u.str))
 90: {
 91: ele->next = t.list;
 92: t.list = ele;
 93: }
 94: else
 95: {
 96: /*
 97: * You’re making the list into an array or
 98: * subtries. Save the current list, replace
 99: * this entry with an array of TRIE_FANOUT
100: * subtries, and insert both the element and
101: * the list in the subtries.
102: */
103: listnode_t *lp = t.list;
104:
105: /*
106: * Calling calloc() rather than malloc()
107: * ensures that the elements are initialized
108: * to NULL.
109: */
110: t.node = (trie_t *) calloc(TRIE_FANOUT,
111: sizeof(trie_t));
112: t.num |= 1;
113: t = eleInsert(t, lp, hash(lp->u.str),
114: depth);
115: t = eleInsert(t, ele, h, depth);
116: }
117: return t;
118: }
119:
120: /*
121: * Finds an element in a trie and returns the resulting
122: * string, or NULL. For internal use by search() only.
123: */
124: static const char * eleSearch(trie_t t, const char * string,
125: unsigned h, int depth)
126: {
127: /*
128: * If the trie is an array of subtries, look for the
129: * element in the proper subtree.
130: */
131: if (t.num & 1)
132: {
133: trie_t nxtNode = t;
134: nxtNode.num &= ~1;
135: nxtNode.node += (h >> depth) & TRIE_MASK;
136: return eleSearch(*nxtNode.node,
137: string, h, depth + TRIE_BITS);
138: }
139: /*
140: * Otherwise, the trie is a list. Perform a linear
141: * search for the desired element.
142: */
143: else

continues

C Programming: Just the FAQs54

144: {
145: listnode_t *lp = t.list;
146:
147: while (lp)
148: {
149: if (strcmp(lp->u.str, string) == 0)
150: return lp->u.str;
151: lp = lp->next;
152: }
153: }
154: return NULL;
155: }
156:
157: /* Test function to print the structure of a trie */
158: void triePrint(trie_t t, int depth)
159: {
160: if (t.num & 1)
161: {
162: int i;
163: trie_t nxtNode = t;
164: nxtNode.num &= ~1;
165: if (depth)
166: printf(“\n”);
167: for (i = 0; i < TRIE_FANOUT; i++)
168: {
169: if (nxtNode.node[i].num == 0)
170: continue;
171: printf(“%*s[%d]”, depth, “”, i);
172: triePrint(nxtNode.node[i], depth + 8);
173: }
174: }
175: else
176: {
177: listnode_t *lp = t.list;
178: while (lp)
179: {
180: printf(“\t’%s’”, lp->u.str);
181: lp = lp->next;
182: }
183: putchar(‘\n’);
184: }
185: }
186:
187: static trie_t t;
188:
189: void insert(const char *s)
190: {
191: t = eleInsert(t, newNode((void *) s), hash(s), 0);
192: }
193:
194: void print(void)
195: {
196: triePrint(t, 0);
197: }

Listing III.5. continued

Chapter III • Sorting and Searching Data 55

198:
199: const char *search(const char *s)
200: {
201: return eleSearch(t, s, hash(s), 0);
202: }

Cross Reference:
III.4: What is the easiest searching method to use?

III.6: What is hashing?

III.8: How can I search for data in a linked list?

III.6: What is hashing?
Answer:

To hash means to grind up, and that’s essentially what hashing is all about. The heart of a hashing algorithm
is a hash function that takes your nice, neat data and grinds it into some random-looking integer.

The idea behind hashing is that some data either has no inherent ordering (such as images) or is expensive
to compare (such as images). If the data has no inherent ordering, you can’t perform comparison searches.
If the data is expensive to compare, the number of comparisons used even by a binary search might be too
many. So instead of looking at the data themselves, you’ll condense (hash) the data to an integer (its hash
value) and keep all the data with the same hash value in the same place. This task is carried out by using the
hash value as an index into an array.

To search for an item, you simply hash it and look at all the data whose hash values match that of the data
you’re looking for. This technique greatly lessens the number of items you have to look at. If the parameters
are set up with care and enough storage is available for the hash table, the number of comparisons needed
to find an item can be made arbitrarily close to one. Listing III.6 shows a simple hashing algorithm. You can
combine this example with code at the end of this chapter to produce a working program.

One aspect that affects the efficiency of a hashing implementation is the hash function itself. It should ideally
distribute data randomly throughout the entire hash table, to reduce the likelihood of collisions. Collisions
occur when two different keys have the same hash value. There are two ways to resolve this problem. In “open
addressing,” the collision is resolved by the choosing of another position in the hash table for the element
inserted later. When the hash table is searched, if the entry is not found at its hashed position in the table,
the search continues checking until either the element is found or an empty position in the table is found.

The second method of resolving a hash collision is called “chaining.” In this method, a “bucket” or linked
list holds all the elements whose keys hash to the same value. When the hash table is searched, the list must
be searched linearly.

C Programming: Just the FAQs56

Listing III.6. A simple example of a hash algorithm.
 1: #include <stdlib.h>
 2: #include <string.h>
 3: #include “list.h”
 4: #include “hash.h”
 5:
 6: #define HASH_SIZE 1024
 7:
 8: static listnode_t *hashTable[HASH_SIZE];
 9:
10: void insert(const char *s)
11: {
12: listnode_t *ele = newNode((void *) s);
13: unsigned int h = hash(s) % HASH_SIZE;
14:
15: ele->next = hashTable[h];
16: hashTable[h] = ele;
17: }
18:
19: void print(void)
20: {
21: int h;
22:
23: for (h = 0; h < HASH_SIZE; h++)
24: {
25: listnode_t *lp = hashTable[h];
26:
27: if (lp == NULL)
28: continue;
29: printf(“[%d]”, h);
30: while (lp)
31: {
32: printf(“\t’%s’”, lp->u.str);
33: lp = lp->next;
34: }
35: putchar(‘\n’);
36: }
37: }
38:
39: const char *search(const char *s)
40: {
41: unsigned int h = hash(s) % HASH_SIZE;
42: listnode_t *lp = hashTable[h];
43:
44: while (lp)
45: {
46: if (!strcmp(s, lp->u.str))
47: return lp->u.str;
48: lp = lp->next;
49: }
50: return NULL;
51: }

Chapter III • Sorting and Searching Data 57

Cross Reference:
III.4: What is the easiest searching method to use?

III.5: What is the quickest searching method to use?

III.8: How can I search for data in a linked list?

III.7: How can I sort a linked list?
Answer:

Both the merge sort and the radix sort shown in FAQ III.2 (see Listings III.2b and III.2c for code) are good
sorting algorithms to use for linked lists.

Cross Reference:
III.1: What is the easiest sorting method to use?

III.2: What is the quickest sorting method to use?

III.3: How can I sort things that are too large to bring into memory?

III.8: How can I search for data in a linked list?
Answer:

Unfortunately, the only way to search a linked list is with a linear search, because the only way a linked list’s
members can be accessed is sequentially. Sometimes it is quicker to take the data from a linked list and store
it in a different data structure so that searches can be more efficient.

Cross Reference:
III.4: What is the easiest searching method to use?

III.5: What is the quickest searching method to use?

III.6: What is hashing?

Sample Code
You can combine the following code with the code from each of the listings in this chapter to form a working
program you can compile and run. Each example has been compiled and run on the same data set, and the
results are compared in the introduction section of this chapter entitled “Performance of Sorting and
Searching.”

The first listing is a makefile, which can be used with a make utility to compile each program. Because some
make utilites don’t understand this format, and because not everyone has a make utility, you can use the
information in this makefile yourself. Each nonblank line lists the name of an example followed by a colon

C Programming: Just the FAQs58

and the source files needed to build it. The actual compiler commands will depend on which brand of
compiler you have and which options (such as memory model) you want to use. Following the makefile are
source files for the main driver programs and the linked list code used by some of the algorithms.

The code in driver1.c (Listing III.9a) sorts all of its command-line arguments, as strings, using whatever
sorting algorithm it is built with, and prints the sorted arguments. The code in driver2.c (Listing III.9b)
generates a table of the first 10,000 prime numbers, then searches for each of its command-line arguments
(which are numbers) in that table.

Because the algorithm in Listing III.6 does not search items in an array, it has its own main procedure. It
reads lines of input until it gets to the end-of-file, and then it prints the entire trie data structure. Then it
searches for each of its command-line arguments in the trie and prints the results.

Listing III.9. A makefile with rules to build the programs in this chapter.
3_1: 3_1.c driver1.c

3_2a: 3_2a.c driver1.c

3_2b: 3_2b.c list.c driver1.c

3_2c: 3_2c.c list.c driver1.c

3_3: 3_3.c 3_1.c

3_4: 3_4.c 3_1.c driver2.c

3_5: 3_5.c 3_1.c driver2.c

3_6: 3_6.c 3_1.c driver2.c

3_7: 3_7.c list.c hash.c driver3.c

3_8: 3_8.c list.c hash.c driver3.c

Listing III.9a. The driver1.c driver for all the sorting algorithms except the external sort algorithm.
#include <stdio.h>

extern void sortStrings(const char **);

/* Sorts its arguments and prints them, one per line */
int
main(int argc, const char *argv[])
{
 int i;

 sortStrings(argv + 1);
 for (i = 1; i < argc; i++)
 puts(argv[i]);
 return 0;
}

Chapter III • Sorting and Searching Data 59

Listing III.9b. The driver2.c driver for the searching algorithms using bsearch(), binary, and linear
search algorithms.

#include <stdio.h>
#include <string.h>

extern const char *search(const char *, const char **,
 size_t);

static int size;
static const char **array;

static void initArray(int limit)
{
 char buf[1000];

 array = (const char **) calloc(limit, sizeof(char *));
 for (size = 0; size < limit; size++)
 {
 if (gets(buf) == NULL)
 break;
 array[size] = strdup(buf);
 }
 sortStrings(array, size);
}

int main(int argc, char **argv)
{
 int i;
 int limit;

 if (argc < 2)
 {
 fprintf(stderr, “usage: %s size [lookups]\n”,
 argv[0]);
 exit(1);
 }
 limit = atoi(argv[1]);
 initArray(limit);
 for (i = 2; i < argc; i++)
 {
 const char *s;

 if (s = search(argv[i], array, limit))
 printf(“%s -> %s\n”, argv[i], s);
 else
 printf(“%s not found\n”, argv[i]);
 }
 return 0;
}

C Programming: Just the FAQs60

Listing III.9c. The driver3.c driver for the trie and hash search programs.
#include <stdio.h>
#include <string.h>

extern void insert(const char *);
extern void print(void);
extern const char *search(const char *);

int
main(int argc, char *argv[])
{
 int i;
 int limit;
 char buf[1000];

 if (argc < 2)
 {
 fprintf(stderr, “usage: %s size [lookups]\n”,
 argv[0]);
 exit(1);
 }
 limit = atoi(argv[1]);
 for (i = 0; i < limit; i++)
 {
 if (gets(buf) == NULL)
 break;
 insert(strdup(buf));
 }
 print();
 for (i = 2; i < argc; i++)
 {
 const char *p = search(argv[i]);
 if (p)
 printf(“%s -> %s\n”, argv[i], p);
 else
 printf(“%s not found\n”, argv[i]);
 }
 return 0;
}

Listing III.9d. The list.h header file, which provides a simple linked list type.
/*
 * Generic linked list node structure--can hold either
 * a character string or another list as data.
 */
typedef struct listnode_s {
 struct listnode_s *next;
 union {
 void *data;
 struct list_s *list;
 const char *str;
 } u;
} listnode_t;

Chapter III • Sorting and Searching Data 61

typedef struct list_s {
 listnode_t *head;
 listnode_t *tail;
} list_t;

extern void appendNode(list_t *, listnode_t *);
extern listnode_t *removeHead(list_t *);
extern void concatList(list_t *, list_t *);
extern list_t *copyOf(list_t);
extern listnode_t *newNode(void *);
extern list_t *newList();

Listing III.9e. The list.c source file, which provides a simple linked list type.
#include <malloc.h>
#include “list.h”

/* Appends a listnode_t to a list_t. */
void appendNode(list_t *list, listnode_t *node)
{
 node->next = NULL;
 if (list->head)
 {
 list->tail->next = node;
 list->tail = node;
 }
 else
 list->head = list->tail = node;
}

/* Removes the first node from a list_t and returns it. */
listnode_t *removeHead(list_t *list)
{
 listnode_t *node = 0;
 if (list->head)
 {
 node = list->head;
 list->head = list->head->next;
 if (list->head == NULL)
 list->tail = NULL;
 node->next = NULL;
 }
 return node;
}

/* Concatenates two lists into the first list. */
void concatList(list_t *first, list_t *second)
{
 if (first->head)
 {
 if (second->head)
 {
 first->tail->next = second->head;
 first->tail = second->tail;
 }
 }

continues

C Programming: Just the FAQs62

 else
 *first = *second;
 second->head = second->tail = NULL;
}

/* Returns a copy of a list_t from the heap. */
list_t *copyOf(list_t list)
{
 list_t *new = (list_t *) malloc(sizeof(list_t));
 *new = list;
 return new;
}

/* Allocates a new listnode_t from the heap. */
listnode_t *newNode(void *data)
{
 listnode_t *new = (listnode_t *)
 malloc(sizeof(listnode_t));
 new->next = NULL;
 new->u.data = data;
 return new;
}

/* Allocates an empty list_t from the heap. */
list_t *newList()
{
 list_t *new = (list_t *) malloc(sizeof(list_t));
 new->head = new->tail = NULL;
 return new;
}

Listing III.9f. The hash.h header file, which provides a simple character string hash function.
unsigned int hash(const char *);

Listing III.9g. The hash.c source file, which provides a simple character string hash function.
#include “hash.h”

/* This is a simple string hash function */
unsigned int hash(const char *string)
{
 unsigned h = 0;

 while (*string)
 h = 17 * h + *string++;
 return h;
}

Listing III.9e. continued

