
Chapter I • The C Language 1

I
The C Language

This chapter focuses on some basic elements of the C programming language. When you
begin programming in C, you probably will find yourself coming up with basic questions
regarding the conventions, keywords, and terms used with the C language. This chapter
attempts to answer some of the most frequently asked questions regarding these subjects.

For instance, one of the most commonly used constructs of the C language is the switch
statement. This chapter includes three frequently asked questions regarding this powerful
language element. This chapter also covers several other topics such as loops, branching,
operator precedence, and blocking guidelines. When reading this chapter, pay close
attention to the questions regarding the switch statement and operator precedence,
because these elements of the C language sometimes can be confusing for the beginning
C programmer.

I.1: What is a local block?
Answer:

A local block is any portion of a C program that is enclosed by the left brace ({) and the
right brace (}). A C function contains left and right braces, and therefore anything
between the two braces is contained in a local block. An if statement or a switch
statement can also contain braces, so the portion of code between these two braces would
be considered a local block. Additionally, you might want to create your own local block

CHAPTER

C Programming: Just the FAQs2

without the aid of a C function or keyword construct. This is perfectly legal. Variables can be declared within
local blocks, but they must be declared only at the beginning of a local block. Variables declared in this
manner are visible only within the local block. Duplicate variable names declared within a local block take
precedence over variables with the same name declared outside the local block. Here is an example of a
program that uses local blocks:

#include <stdio.h>

void main(void);

void main()
{

 /* Begin local block for function main() */

 int test_var = 10;

 printf(“Test variable before the if statement: %d\n”, test_var);

 if (test_var > 5)
 {

 /* Begin local block for “if” statement */

 int test_var = 5;

 printf(“Test variable within the if statement: %d\n”,
 test_var);

 {

 /* Begin independent local block (not tied to
 any function or keyword) */

 int test_var = 0;

 printf(
 “Test variable within the independent local block:%d\n”,
 test_var);

 }

 /* End independent local block */

 }

 /* End local block for “if” statement */

 printf(“Test variable after the if statement: %d\n”, test_var);

}

/* End local block for function main() */

This example program produces the following output:

Test variable before the if statement: 10
Test variable within the if statement: 5

Chapter I • The C Language 3

Test variable within the independent local block: 0
Test variable after the if statement: 10

Notice that as each test_var was defined, it took precedence over the previously defined test_var. Also
notice that when the if statement local block had ended, the program had reentered the scope of the original
test_var, and its value was 10.

Cross Reference:
I.2: Should variables be stored in local blocks?

I.2: Should variables be stored in local blocks?
Answer:

The use of local blocks for storing variables is unusual and therefore should be avoided, with only rare
exceptions. One of these exceptions would be for debugging purposes, when you might want to declare a
local instance of a global variable to test within your function. You also might want to use a local block when
you want to make your program more readable in the current context. Sometimes having the variable
declared closer to where it is used makes your program more readable. However, well-written programs
usually do not have to resort to declaring variables in this manner, and you should avoid using local blocks.

Cross Reference:
I.1: What is a local block?

I.3: When is a switch statement better than multiple if
statements?

Answer:
A switch statement is generally best to use when you have more than two conditional expressions based on
a single variable of numeric type. For instance, rather than the code

if (x == 1)
 printf(“x is equal to one.\n”);
else if (x == 2)
 printf(“x is equal to two.\n”);
else if (x == 3)
 printf(“x is equal to three.\n”);
else
 printf(“x is not equal to one, two, or three.\n”);

the following code is easier to read and maintain:

switch (x)
{
 case 1: printf(“x is equal to one.\n”);

C Programming: Just the FAQs4

 break;
 case 2: printf(“x is equal to two.\n”);
 break;
 case 3: printf(“x is equal to three.\n”);
 break;
 default: printf(“x is not equal to one, two, or three.\n”);
 break;
}

Notice that for this method to work, the conditional expression must be based on a variable of numeric type
in order to use the switch statement. Also, the conditional expression must be based on a single variable. For
instance, even though the following if statement contains more than two conditions, it is not a candidate
for using a switch statement because it is based on string comparisons and not numeric comparisons:

char* name = “Lupto”;

if (!stricmp(name, “Isaac”))
 printf(“Your name means ‘Laughter’.\n”);
else if (!stricmp(name, “Amy”))
 printf(“Your name means ‘Beloved’.\n “);
else if (!stricmp(name, “Lloyd”))
 printf(“Your name means ‘Mysterious’.\n “);
else
 printf(“I haven’t a clue as to what your name means.\n”);

Cross Reference:
I.4: Is a default case necessary in a switch statement?

I.5: Can the last case of a switch statement skip including the break?

I.4: Is a default case necessary in a switch statement?
Answer:

No, but it is not a bad idea to put default statements in switch statements for error- or logic-checking
purposes. For instance, the following switch statement is perfectly normal:

switch (char_code)
{
 case ‘Y’:
 case ‘y’: printf(“You answered YES!\n”);
 break;
 case ‘N’:
 case ‘n’: printf(“You answered NO!\n”);
 break;
}

Consider, however, what would happen if an unknown character code were passed to this switch statement.
The program would not print anything. It would be a good idea, therefore, to insert a default case where this
condition would be taken care of:

...
 default: printf(“Unknown response: %d\n”, char_code);
 break;
...

Chapter I • The C Language 5

Additionally, default cases come in handy for logic checking. For instance, if your switch statement handled
a fixed number of conditions and you considered any value outside those conditions to be a logic error, you
could insert a default case which would flag that condition. Consider the following example:

void move_cursor(int direction)
{
 switch (direction)
 {
 case UP: cursor_up();
 break;
 case DOWN: cursor_down();
 break;
 case LEFT: cursor_left();
 break;
 case RIGHT: cursor_right();
 break;
 default: printf(“Logic error on line number %ld!!!\n”,
 __LINE__);
 break;
 }
}

Cross Reference:
I.3: When is a switch statement better than multiple if statements?

I.5: Can the last case of a switch statement skip including the break?

I.5: Can the last case of a switch statement skip including
the break ?

Answer:
Even though the last case of a switch statement does not require a break statement at the end, you should
add break statements to all cases of the switch statement, including the last case. You should do so primarily
because your program has a strong chance of being maintained by someone other than you who might add
cases but neglect to notice that the last case has no break statement. This oversight would cause what would
formerly be the last case statement to “fall through” to the new statements added to the bottom of the switch
statement. Putting a break after each case statement would prevent this possible mishap and make your
program more “bulletproof.” Besides, most of today’s optimizing compilers will optimize out the last break,
so there will be no performance degradation if you add it.

Cross Reference:
I.3: When is a switch statement better than multiple if statements?

I.4: Is a default case necessary in a switch statement?

C Programming: Just the FAQs6

I.6: Other than in a for statement, when is the comma
operator used?

Answer:
The comma operator is commonly used to separate variable declarations, function arguments, and
expressions, as well as the elements of a for statement. Look closely at the following program, which shows
some of the many ways a comma can be used:

#include <stdio.h>
#include <stdlib.h>

void main(void);

void main()
{

 /* Here, the comma operator is used to separate
 three variable declarations. */

 int i, j, k;

 /* Notice how you can use the comma operator to perform
 multiple initializations on the same line. */

 i = 0, j = 1, k = 2;

 printf(“i = %d, j = %d, k = %d\n”, i, j, k);

 /* Here, the comma operator is used to execute three expressions
 in one line: assign k to i, increment j, and increment k.
 The value that i receives is always the rightmost expression. */

 i = (j++, k++);

 printf(“i = %d, j = %d, k = %d\n”, i, j, k);

 /* Here, the while statement uses the comma operator to
 assign the value of i as well as test it. */

 while (i = (rand() % 100), i != 50)
 printf(“i is %d, trying again...\n”, i);

 printf(“\nGuess what? i is 50!\n”);

}

Notice the line that reads

i = (j++, k++);

This line actually performs three actions at once. These are the three actions, in order:

Chapter I • The C Language 7

1. Assigns the value of k to i. This happens because the left value (lvalue) always evaluates to the rightmost
argument. In this case, it evaluates to k. Notice that it does not evaluate to k++, because k++ is a postfix
incremental expression, and k is not incremented until the assignment of k to i is made. If the
expression had read ++k, the value of ++k would be assigned to i because it is a prefix incremental
expression, and it is incremented before the assignment is made.

2. Increments j.

3. Increments k.

Also, notice the strange-looking while statement:

while (i = (rand() % 100), i != 50)
 printf(“i is %d, trying again...\n”);

Here, the comma operator separates two expressions, each of which is evaluated for each iteration of the
while statement. The first expression, to the left of the comma, assigns i to a random number from 0 to 99.
The second expression, which is more commonly found in a while statement, is a conditional expression that
tests to see whether i is not equal to 50. For each iteration of the while statement, i is assigned a new random
number, and the value of i is checked to see that it is not 50. Eventually, i is randomly assigned the value
50, and the while statement terminates.

Cross Reference:
I.12: Is left-to-right or right-to-left order guaranteed for operator precedence?

I.13: What is the difference between ++var and var++?

I.7: How can you tell whether a loop ended prematurely?
Answer:

Generally, loops are dependent on one or more variables. Your program can check those variables outside
the loop to ensure that the loop executed properly. For instance, consider the following example:

#define REQUESTED_BLOCKS 512

int x;
char* cp[REQUESTED_BLOCKS];

/* Attempt (in vain, I must add...) to
 allocate 512 10KB blocks in memory. */

for (x=0; x< REQUESTED_BLOCKS; x++)
{

 cp[x] = (char*) malloc(10000, 1);

 if (cp[x] == (char*) NULL)
 break;

}

C Programming: Just the FAQs8

/* If x is less than REQUESTED_BLOCKS,
 the loop has ended prematurely. */

if (x < REQUESTED_BLOCKS)
 printf(“Bummer! My loop ended prematurely!\n”);

Notice that for the loop to execute successfully, it would have had to iterate through 512 times. Immediately
following the loop, this condition is tested to see whether the loop ended prematurely. If the variable x is
anything less than 512, some error has occurred.

Cross Reference:
None.

I.8: What is the difference between goto and long jmp()
and setjmp()?

Answer:
A goto statement implements a local jump of program execution, and the longjmp() and setjmp() functions
implement a nonlocal, or far, jump of program execution. Generally, a jump in execution of any kind should
be avoided because it is not considered good programming practice to use such statements as goto and
longjmp in your program.

A goto statement simply bypasses code in your program and jumps to a predefined position. To use the goto
statement, you give it a labeled position to jump to. This predefined position must be within the same
function. You cannot implement gotos between functions. Here is an example of a goto statement:

void bad_programmers_function(void)
{

 int x;

 printf(“Excuse me while I count to 5000...\n”);

 x = 1;

 while (1)
 {
 printf(“%d\n”, x);

 if (x == 5000)
 goto all_done;
 else
 x = x + 1;
 }

all_done:

 printf(“Whew! That wasn’t so bad, was it?\n”);

}

Chapter I • The C Language 9

This example could have been written much better, avoiding the use of a goto statement. Here is an example
of an improved implementation:

void better_function(void)
{

 int x;

 printf(“Excuse me while I count to 5000...\n”);

 for (x=1; x<=5000; x++)
 printf(“%d\n”, x);

 printf(“Whew! That wasn’t so bad, was it?\n”);

}

As previously mentioned, the longjmp() and setjmp() functions implement a nonlocal goto. When your
program calls setjmp(), the current state of your program is saved in a structure of type jmp_buf. Later, your
program can call the longjmp() function to restore the program’s state as it was when you called setjmp().
Unlike the goto statement, the longjmp() and setjmp() functions do not need to be implemented in the
same function. However, there is a major drawback to using these functions: your program, when restored
to its previously saved state, will lose its references to any dynamically allocated memory between the
longjmp() and the setjmp(). This means you will waste memory for every malloc() or calloc() you have
implemented between your longjmp() and setjmp(), and your program will be horribly inefficient. It is
highly recommended that you avoid using functions such as longjmp() and setjmp() because they, like the
goto statement, are quite often an indication of poor programming practice.

Here is an example of the longjmp() and setjmp() functions:

#include <stdio.h>
#include <setjmp.h>

jmp_buf saved_state;

void main(void);
void call_longjmp(void);

void main(void)
{

 int ret_code;

 printf(“The current state of the program is being saved...\n”);

 ret_code = setjmp(saved_state);

 if (ret_code == 1)
 {
 printf(“The longjmp function has been called.\n”);
 printf(“The program’s previous state has been restored.\n”);
 exit(0);
 }

C Programming: Just the FAQs10

 printf(“I am about to call longjmp and\n”);
 printf(“return to the previous program state...\n”);

 call_longjmp();

}

void call_longjmp(void)
{

 longjmp(saved_state, 1);

}

Cross Reference:
None.

I.9: What is an lvalue?
Answer:

An lvalue is an expression to which a value can be assigned. The lvalue expression is located on the left side
of an assignment statement, whereas an rvalue (see FAQ I.11) is located on the right side of an assignment
statement. Each assignment statement must have an lvalue and an rvalue. The lvalue expression must
reference a storable variable in memory. It cannot be a constant. For instance, the following lines show a few
examples of lvalues:

int x;
int* p_int;

x = 1;
*p_int = 5;

The variable x is an integer, which is a storable location in memory. Therefore, the statement x = 1 qualifies
x to be an lvalue. Notice the second assignment statement, *p_int = 5. By using the * modifier to reference
the area of memory that p_int points to, *p_int is qualified as an lvalue. In contrast, here are a few examples
of what would not be considered lvalues:

#define CONST_VAL 10

int x;

/* example 1 */
1 = x;

/* example 2 */
CONST_VAL = 5;

In both statements, the left side of the statement evaluates to a constant value that cannot be changed because
constants do not represent storable locations in memory. Therefore, these two assignment statements do not
contain lvalues and will be flagged by your compiler as errors.

Chapter I • The C Language 11

Cross Reference:
I.10: Can an array be an lvalue?

I.11: What is an rvalue?

I.10: Can an array be an lvalue?
Answer:

In FAQ I.9, an lvalue was defined as an expression to which a value can be assigned. Is an array an expression
to which we can assign a value? The answer to this question is no, because an array is composed of several
separate array elements that cannot be treated as a whole for assignment purposes. The following statement
is therefore illegal:

int x[5], y[5];

x = y;

You could, however, use a for loop to iterate through each element of the array and assign values individually,
such as in this example:

int i;
int x[5];
int y[5];

...
for (i=0; i<5; i++)
 x[i] = y[i]
...

Additionally, you might want to copy the whole array all at once. You can do so using a library function such
as the memcpy() function, which is shown here:

memcpy(x, y, sizeof(y));

It should be noted here that unlike arrays, structures can be treated as lvalues. Thus, you can assign one
structure variable to another structure variable of the same type, such as this:

typedef struct t_name
{
 char last_name[25];
 char first_name[15];
 char middle_init[2];
} NAME;

...

NAME my_name, your_name;

...

your_name = my_name;

...

C Programming: Just the FAQs12

In the preceding example, the entire contents of the my_name structure were copied into the your_name
structure. This is essentially the same as the following line:

memcpy(your_name, my_name, sizeof(your_name));

Cross Reference:
I.9: What is an lvalue?

I.11: What is an rvalue?

I.11: What is an rvalue?
Answer:

In FAQ I.9, an lvalue was defined as an expression to which a value can be assigned. It was also explained
that an lvalue appears on the left side of an assignment statement. Therefore, an rvalue can be defined as an
expression that can be assigned to an lvalue. The rvalue appears on the right side of an assignment statement.
Unlike an lvalue, an rvalue can be a constant or an expression, as shown here:

int x, y;

x = 1; /* 1 is an rvalue; x is an lvalue */

y = (x + 1); /* (x + 1) is an rvalue; y is an lvalue */

As stated in FAQ I.9, an assignment statement must have both an lvalue and an rvalue. Therefore, the
following statement would not compile because it is missing an rvalue:

int x;

x = void_function_call() /* the function void_function_call()
 returns nothing */

If the function had returned an integer, it would be considered an rvalue because it evaluates into something
that the lvalue, x, can store.

Cross Reference:
I.9: What is an lvalue?

I.10: Can an array be an lvalue?

I.12: Is left-to-right or right-to-left order guaranteed for
operator precedence?

Answer:
The simple answer to this question is neither. The C language does not always evaluate left-to-right or right-
to-left. Generally, function calls are evaluated first, followed by complex expressions and then simple

Chapter I • The C Language 13

expressions. Additionally, most of today’s popular C compilers often rearrange the order in which the
expression is evaluated in order to get better optimized code. You therefore should always implicitly define
your operator precedence by using parentheses.

For example, consider the following expression:

a = b + c/d / function_call() * 5

The way this expression is to be evaluated is totally ambiguous, and you probably will not get the results you
want. Instead, try writing it by using implicit operator precedence:

a = b + (((c/d) / function_call()) * 5)

Using this method, you can be assured that your expression will be evaluated properly and that the compiler
will not rearrange operators for optimization purposes.

Cross Reference:
None.

I.13: What is the difference between ++var and var++?
Answer:

The ++ operator is called the increment operator. When the operator is placed before the variable (++var),
the variable is incremented by 1 before it is used in the expression. When the operator is placed after the
variable (var++), the expression is evaluated, and then the variable is incremented by 1. The same holds true
for the decrement operator (--). When the operator is placed before the variable, you are said to have a prefix
operation. When the operator is placed after the variable, you are said to have a postfix operation.

For instance, consider the following example of postfix incrementation:

int x, y;

x = 1;
y = (x++ * 5);

In this example, postfix incrementation is used, and x is not incremented until after the evaluation of the
expression is done. Therefore, y evaluates to 1 times 5, or 5. After the evaluation, x is incremented to 2.

Now look at an example using prefix incrementation:

int x, y;

x = 1;
y = (++x * 5);

This example is the same as the first one, except that this example uses prefix incrementation rather than
postfix. Therefore, x is incremented before the expression is evaluated, making it 2. Hence, y evaluates to
2 times 5, or 10.

C Programming: Just the FAQs14

Cross Reference:
None.

I.14: What does the modulus operator do?
Answer:

The modulus operator (%) gives the remainder of two divided numbers. For instance, consider the following
portion of code:

x = 15/7

If x were an integer, the resulting value of x would be 2. However, consider what would happen if you were
to apply the modulus operator to the same equation:

x = 15%7

The result of this expression would be the remainder of 15 divided by 7, or 1. This is to say that 15 divided
by 7 is 2 with a remainder of 1.

The modulus operator is commonly used to determine whether one number is evenly divisible into another.
For instance, if you wanted to print every third letter of the alphabet, you would use the following code:

int x;

for (x=1; x<=26; x++)
 if ((x%3) == 0)
 printf(“%c”, x+64);

The preceding example would output the string “cfilorux”, which represents every third letter in the
alphabet.

Cross Reference:
None.

