CHAPTER

¢

ANSI/ISO Standards

If you don’t appreciate the value of the C language standards, you probably don’t know
how lucky you are.

A C programmer can expect to take a C program developed anywhere, drop it into
another compiler, and have it compile. That’s not entirely true; many header files and
function libraries are particular to specific compilers or specific platforms. There are a
(very!) few language extensions, such as the near and far keywords and register pseudo-
variables for Intel-based compilers, but even they’ve become standard across vendors for
that platform.

If this seems to you to be the normal state of affairs, like having the accelerator pedal on
the left and brakes on the right, you've lived a sheltered life. There are two different
standards for BASIC, but no widespread implementation for either. The most popular
Pascal compiler in the world doesn’t conform to either official standard. The C++
standard that’s being developed has changed so fast that it has never been backed up by
a widely distributed implementation. There’s a rigorous Ada standard that several
implementations conform to, but Ada hasn’t exactly taken the world by storm.

Thereare technically two C standards, one from the ANSI (American National Standards
Institute) X3J11 committee and one from ISO (International Standards Organization)
9899-1990. Because the few changes 1SO made supersede the ANSI document, and
ANSI itself accepts the international version, it’s correct to talk about “the ANSI/ISO
standard.”

284

C Programming: Just the FAQs

So, how does that help you? A copy of the standard, covering both the language and the library, with
commentary, is available commercially: Herbert Schildt’s The Annotated ANSI C Standard (Osborne
McGraw-Hill, ISBN 0-07-881952-0). It’s a lot cheaper than most official standards, which ANSI and ISO
sell to help cover the costs of establishing standards. Not every C programmer needs a copy, but nothing’s
more definitive than this.

The bottom line is that the ANSI/ISO standard is the definitive answer to the question “What is C?” If your
compiler vendor does something that doesn’t follow the standard, you can report it as a bug and expect little
argument.

The standard doesn’t cover everything. In particular, it doesn’t cover a lot of interesting things a C program
might do, such as graphics or multitasking. There are many competing (read “incompatible™) standards to
cover these areas. Maybe some will be recognized as definitive. Don’t hold your breath.

By the way, there are ANSI standards for a lot of things besides programming languages. One of the many
things ANSI has written a standard for is a set of escape sequences for full-screen text manipulation. That’s
what the MS-DOS “ANSI driver” refers to in Chapter XVII, “User Interface.” (Ironically, the MS-DOS
ANSI.SYS implements only a fraction of the ANSI standard sequences.)

XVI.1: Does operator precedence always work?
Answer:

The rules for operator precedence are a little complicated. In most cases, they’re set up to do what you need.
Arguably, a few of the rules could have been done better.

Quick review: “Operator precedence” is the collection of rules about which “operators” (such as +and = and
such) take “precedence,” that is, which are calculated first. In mathematics, an expression such as 2” 3+4” 5
isthesame as (2° 3)+(4” 5); the multiplication happens before the addition. That means that multiplication
“takes precedence over” addition, or multiplication “has higher precedence than” addition.

There are no fewer than 16 levels of operator precedence in C. It turns out having that many rules can make
C programs slightly harder to read sometimes, but much easier to write. That’s not the only way to make
that tradeoff, but it’s the C way. The levels of operator precedence are summarized in Table XVI.1.

Table XVI.1. Summary of operator precedence (highest to lowest).

Level Operators

1

x[y] (subscript)

x(y) (function call)

x.y (member access)

x->y (member pointer access)
x++ (postincrement)

x-- (postdecrement)

++x (increment)

--x (decrement)

&x (address-of)

*x (pointer indirection)

Chapter XVI

* ANSI/ISO Standards

Level Operators
+x (same as x, just as in mathematics)
-x (mathematical negation)
1x (logical negation)
~x (bitwise negation)
sizeof x and sizeof(x_t) (size in bytes)
3 (x_t)y (type cast)
4 x*y (multiplication)
x/y (division)
xyy (remainder)
5 x+y (addition)
x-y (subtraction)
6 x<<y (bitwise left shift)
x>>y (bitwise right shift)
7 x<y, x>y, x<=y, x>=y (relation comparisons)
8 x==y, x1=y (equality comparisons)
9 x&y (bitwise AND)
10 xny (bitwise exclusive OR)
11 xly (bitwise OR)
12 x&&y (logical AND)
13 x11y (logical oR)
14 x?y:z (conditional)
15 X=y, X*2y, x/=y, X+=y, x-=y, <<=, >>=, &=, A=, |= (assignment; right associative!)
16 x,y (comma)

The highest level of precedence is postfix expressions, things that go after an expression. The next highest
level is prefix or unary expressions, things that go before an expression. The next highest level after that is

type cast.

NOTE

The most important thing to know about operator precedence is that <p++ means the same thing
as =(p++); that is, the ++ operates on the pointer, not the pointed-to thing. Code such as *p++ =
=g++isvery common in C. The precedence is the same as that for (*(p++)) = (*(g++)). InEnglish,
that means, “Increment g by one but use its old value, find the thing g points to, decrement p by
one but use its old value, and assign the thing pointed to by q to the thing pointed to by p.” The
value of the whole expression is the value of the thing originally pointed to by g. You'll see code
like this again and again in C, and you’ll have many opportunities to write code like this. You can
look up the other operator precedence rules when you can’t remember them. To be a good C
programmer, though, you’ll have to know what *p++ means without much conscious thought.

continues

285

286

C Programming: Just the FAQs

The original C compiler was written for acomputer that had instructions to handle constructs such
as *p++and *p++ = *q++ incredibly efficiently. Asa result, a lot of C code is written that way. As
afurther result, because there’sso much C code like that, people who design new computers make
sure that there are very efficient instructions to handle these C constructs.

The next level of precedence is multiplication, division, and division remainder (also known as modulus).
After that comes addition and subtraction. Just as in mathematical expressions, 2*3+4*5 means the same
thing as (2*3)+(4*5).

The next level of precedence is bitwise shifting.

The next levels are the relational comparisons (such as x<y) and then the equality comparisons (x==y and
x1=y).

The next three levels are bitwise AND, exclusive OR, and OR, respectively.

NOTE

The third most important thing to know about operator precedence (after what *p++ and x=y=z
mean) is that x&y==z is not the same as (x&y)==z. Because the precedence of the bitwise operators
is lower than that of the comparison operators, x&y==z is the same as x&(y==z). That means “See
whether y and z are equal (1 if they are, O if they aren’t), then bitwise AND x and the result of the
comparison.” Thisisafar less likely thing to do than “bitwise AND x and y and see whether the result
isequal to z.” One might argue that the precedence of the bitwise operators should be higher than
that of the comparison operators. It’s about 20 years too late to do anything about it. If you want
to compare the results of a bitwise operation with something else, you need parentheses.

The next levels are the logical operators, such as x&&y and x| |y. Note that logical AND has higher precedence
than logical or. That reflects the way we speak in English. For example, consider this:

if (have_ticket && have_reservation
|| have_money && standby_ok) {
goto_airport();
}

In English, you would say, “If you have a ticket and you have a reservation, or if you have money and it’s
OK to fly standby, go to the airport.” If you override the precedence with parentheses, you have a very
different condition:

/* not a recommended algorithm! */
if (have_ticket
&& (have_reservation || have_money)
&& standby ok) {
goto_airport();
}

In English, you would say, “If you have a ticket, and if you have a reservation or you have money, and it’s
OK to fly standby, go to the airport.”

Chapter XVI < ANSI/ISO Standards 287

The next level of precedence is the conditional expression, x?y:z. This is an if-then-else construct that’s an
expression, not a statement. Sometimes conditional expressions make code much simpler; sometimesthey’re
obscure. Conditional expressions are right associative, which means that

a?b:c?d:e

means the same thing as this:
a?b:(?d:e)

This is very much like an else-if construct.

The next level of precedence is assignment. All the assignment operators have the same precedence. Unlike
all the other C binary operators, assignment is “right associative”; it'sdone right to left, not left to right. x+y+z
is the same as (x+y)+z, and x*y*z is the same as (x*y)*z, but x=y=z is the same as x=(y=2).

NOTE

The second most important thing to know about operator precedence (after what *p++ means) is
what x=y=z means. Because assignment is right associative, it means x=(y=z), or in English, “Assign
the value of z to y, and then assign that value to x.” It’s very common to see code such as this:

a=b=c=d=0;
This assigns zero to d, then c, then b, and finally a, right to left.

The lowest level of precedence in C is the comma operator. The comma operator takes two expressions,
evaluates the first one, throws it away, and evaluates the second one. This makes sense only if the first
expression has a side effect, such as assignment or a function call. The comma and assignment operators are
often used in for statements:

for (i=0, count=0; i < MAX; ++i) {
if (interesting(al[i]) {
++count;

}
¥

Cross Reference:

1.6: Other than in a for statement, when is the comma operator used?

1.12: Is left-to-right or right-to-left order guaranteed for operator precedence?
1.13: What is the difference between ++var and var++?

1.14: What does the modulus operator do?

11.13: When should a type cast be used?

11.14: When should a type cast not be used?

VII.1: What is indirection?

288 C Programming: Just the FAQs

XV1.2: Should function arguments’ types be declared in the
argument list of a function or immediately following?

Answer:

Function arguments should be declared in the argument list, unless you're dealing with an out-of-date
compiler. In that case, you should use an #ifdef to do it both ways.

There are two ways to define a function. Consider two functions, foo1 and foo2, that take one char=*
argument and return an integer. Say they’re defined in the following way:

/* old style */
int

fool(p)

char* p;

/* body of function goes here */

}

/* new style */
int

foo2(char* p)

{

}
The only advantage of the old style is that it’s prettier for long argument lists.

/* body of function goes here */

The advantage of the new style is that it provides a function prototype as well as a function definition. Thus,
if any call to foo2 is made in the same .c file in which foo2 is defined, after foo2 is defined, the compiler will
check the arguments in the call with the arguments in the definition. If the arguments don’t match, the
compiler will probably inform you that something is terribly wrong. (The standard doesn’t require this step,
but it occurs with most compilers.) If the arguments in the call can be converted to the arguments in the
definition, they will be. That happens only if the function is defined in the new style, or if a function
prototype is seen. If the function is defined in the old style and no prototype was seen, no argument
conversion will be performed; probably, little or no argument checking will be done either.

The only disadvantage of the new style is that there are still compilers that don’t support it. (These are mostly
UNIX-based compilers that are bundled, at no extra charge, with the operating system. On the other hand,
many versions of UNIX come standard with ANSI-compliant C compilers.)

If you might need to deal with non-ANSI C compilers, your best bet is to pick a macro that will be defined
when prototypes and new style function definitions are supported. A header file for this macro can define
it automatically, for cases in which prototypes are known to be supported:

#ifdef __ANSI__
#ifndef USE_PROTOS
#define USE_PROTOS 1
#endif

#endif

Chapter XVI « ANSI/ISO Standards 289

Function declarations might look like this:

#ifdef USE_PROTOS
int fool(char®);
int foo2(char®);
#else

int foolQ;

int foo2();
#endif

A function definition might look like this:
int

#ifdef USE_PROTOS

fool(char* p)

#else

fool(p)

char* p;

#endif

{

/* body of function goes here */

¥

If your software runs only on MS-DOS, MS-Windows, or Macintosh personal computers, don’t worry
about the old style; always use the new style.

Cross Reference:

VI1I1.1: When should I declare a function?
VI111.2: Why should | prototype a function?

XV1.3: Should programs include a prototype for main()?
Answer:

Programs should never include a prototype for main.

main() is a function, mostly the same as any other function. However, main() can be defined with at least
two possible parameter lists:

int main(void)
(taking no arguments) or

int main(int argc, char** argv);

NOTE

The arguments to main() don’t have to be called argc and argv, but they almost always are. There
are better ways and places to be creative than making up new names for main()’s arguments.

290

C Programming: Just the FAQs

In the second case,

argc is the number of arguments passed to the program at runtime,
argv[0] is the name of the program,
argv[1] through argv[argc-1] are the arguments passed to the program, and
argv[argc] is a null pointer.
There might be other legitimate definitions, such as this one:
int main(int argc, char** argv, char** envp);

envp is an environment list, like the one used by getenv(). It's terminated by a null pointer the same way
argv is.

There’s no prototype that can match all the legal definitions of main¢). The standard says no compiler will
provide a prototype for main(); in my opinion, you shouldn’t either.

Without a prototype, your program can’t explicitly call main() and still do argument checking. Such a call
isn’t forbidden by the standard, but it’s probably not a good idea.

NOTE

C++programsare explicitly forbidden from calling main(). (Some compilersenable you todo this;
they’re wrong.) The C++ compiler adds some magical code to main() so initialization (“construc-
tion”) of global variables happens. If a C++ program could run main() twice, this initialization
could happen twice, which would be a Bad Thing.

Cross Reference:

VII1.2: Why should | prototype a function?

XV1.4: Should main() always return a value?
Answer:

Yes, unless it calls exitQ).

When a program runs, it usually terminates with some indication of success or some error code. A C program
controls this indication in one (or both) of two ways, which have exactly the same effect:

It returns a value (the success or failure code) from main(Q.
It calls exit(), passing the success or failure code as an argument.

If the program “drops off the end of main()” without taking either of these actions, there’s no guarantee what
the success or failure code will be. This is a Bad Thing.

Chapter XVI < ANSI/ISO Standards 291

Whenever you write a C program, quickly check the main() function. The last statement should always be
either a return statement or a call to the exit() function. (The only exception is when the last statement
will never finish, such as an infinite for loop with no break statement. In that case, your compiler will
probably complain about adding another statement that can never be reached.)

Cross Reference:

VI1I1.9: Is using exit() the same as using return?

