
Chapter XIV • System Calls 255

XIV
System Calls

CHAPTER

One of the most crucial pieces of the PC puzzle, and sometimes the most often
misunderstood, is the set of system calls. The functions that the system calls represent
perform practically all the rudimentary operations of the computer—screen and disk
handling, keyboard and mouse handling, managing the file system, time of day, and
printing are just some of the tasks performed by the system calls.

Collectively, the system calls are often referred to as the BIOS, which stands for Basic
Input Output System. In reality, there are several different BIOSes. For example, the
motherboard BIOS performs initial hardware detection and system booting; the VGA
BIOS (if you have a VGA card) handles all the screen-manipulation functions; the fixed
disk BIOS manages the hard drives; and so on. DOS is a software layer that “sits” on top
of these lower-level BIOSes and provides a common access to these lower-level BIOSes.
What this means is that, in general, there is a DOS system call for just about every kind
of system feature you want to initiate. DOS will call one of the lower level BIOSes to
actually perform the requested task. Throughout this chapter, you will find that you can
call DOS to perform a task, or you can call the lower-level BIOS directly to perform the
same task.

C Programming: Just the FAQs256

XIV.1: How can environment variable values be retrieved?
Answer:

The ANSI C language standard provides a function called getenv() that performs this very task. The
getenv() function is simple—you hand it a pointer to the environment string you want to search for, and
it returns a pointer to the value of that variable. The following example code illustrates how to get the PATH
environment variable from C:

#include <stdlib.h>

main(int argc, char ** argv)
{
 char envValue[129]; /* buffer to store PATH */
 char * envPtr = envValue; /* pointer to this buffer */

 envPtr = getenv(“PATH”); /* get the PATH */

 printf(“PATH=%s\n”, envPtr); /* print the PATH */

}

If you compile and run this example, you will see the same output that you see when you enter the PATH
command at the DOS prompt. Basically, you can use getenv() to retrieve any of the environment values
that you have in your AUTOEXEC.BAT file or that you have typed at the DOS prompt since booting.

Here’s a cool trick. When Windows is running, Windows sets a new environment variable called WINDIR that
contains the full pathname of the Windows directory. Following is sample code for retrieving this string:

#include <stdlib.h>

main(int argc, char ** argv)
{
 char envValue[129];
 char * envPtr = envValue;

 envPtr = getenv(“windir”);

 /* print the Windows directory */
 printf(“The Windows Directory is %s\n”, envPtr);

}

This is also useful for determining whether Windows is running and your DOS program is being run in a
DOS shell rather than “real” DOS. Note that the windir string is lowercase—this is important because it
is case-sensitive. Using WINDIR results in a NULL string (variable-not-found error) being returned.

It is also possible to set environment variables using the _putenv() function. Note, however, that this
function is not an ANSI standard, and it might not exist by this name or even exist at all in some compilers.
You can do many things with the _putenv() function. In fact, it is this function that Windows uses to create
the windir environment variable in the preceding example.

Chapter XIV • System Calls 257

Cross Reference:
XIV.2: How can I call DOS functions from my program?

XIV.3: How can I call BIOS functions from my program?

XIV.2: How can I call DOS functions from my program?
Answer:

To be honest, you are calling DOS functions whenever you call printf(), fopen(), fclose(), any function
whose name starts with _dos, or dozens of other C functions. However, Microsoft and Borland C provide
a pair of functions called int86() and int86x() that enable you to call not only DOS, but other low-level
functions as well. Using these functions, you often can save time by bypassing the standard C functions and
calling the DOS functions directly. The following example illustrates how to call DOS to get a character from
the keyboard and print a character string, instead of calling getch() and printf() to perform the task. (This
code needs to be compiled with the Large memory model.)

#include <stdlib.h>
#include <dos.h>

char GetAKey(void);
void OutputString(char *);

main(int argc, char ** argv)
{
 char str[128];
 union REGS regs;
 int ch;

 /* copy argument string; if none, use “Hello World” */
 strcpy(str, (argv[1] == NULL ? “Hello World” : argv[1]));

 while((ch = GetAKey()) != 27){
 OutputString(str);
 }

}

char
GetAKey()
{
 union REGS regs;

 regs.h.ah = 1; /* function 1 is “get keyboard character” */
 int86(0x21, ®s, ®s);

 return((char)regs.h.al);
}

void
OutputString(char * string)

C Programming: Just the FAQs258

{
 union REGS regs;
 struct SREGS segregs;

 /* terminate string for DOS function */
 *(string+strlen(string)) = ‘$’;

 regs.h.ah = 9; /* function 9 is “print a string” */
 regs.x.dx = FP_OFF(string);
 segregs.ds = FP_SEG(string);

 int86x(0x21, ®s, ®s, &segregs);
}

The preceding example code created two functions to replace getch() and printf(). They are GetAKey()
and OutputString(). In truth, the GetAKey() function is actually more analogous to the standard C getche()
function because it, like getche(), prints the key character on-screen. In both cases, DOS itself was called
using the int86() function (in GetAKey()) and the int86x() function (in OutputString()) to perform the
desired tasks.

DOS contains a veritable plethora of callable routines just like these two functions. Although you’ll find that
many of them are well covered by standard C routines, you’ll also find that many are not. DOS also contains
many undocumented functions that are quite interesting, and useful as well. An excellent example of this is
the DOS Busy Flag, also called the InDos Flag. DOS function 34 hex returns a pointer to a system memory
location that contains the DOS Busy Flag. This flag is set to 1 whenever DOS is busy doing something critical
and doesn’t want to be called (not even by itself). The flag is cleared (set to zero) when DOS is not busy. The
purpose of this flag is to inform DOS when it is executing critical code. However, programmers find this flag
useful as well so that they can also know when DOS is busy. Because Microsoft has recently documented
this function, it is technically no longer an undocumented routine, but it has been in DOS since version 2.0.
Several excellent books on documented and undocumented DOS functions are available for those who are
more interested in this topic.

Cross Reference:
XIV.3: How can I call BIOS functions from my program?

XIV.3: How can I call BIOS functions from my program?
Answer:

As in the preceding example, you are quite frequently calling BIOS functions when you use standard C library
routines such as _setvideomode(). In addition, even the DOS functions used previously (getch() and
printf()) ultimately made calls into the BIOS to actually perform the tasks. In such cases, DOS is simply
passing on your DOS request to the proper lower-level BIOS function. In fact, the following example code
illustrates this fact perfectly. This code performs the same tasks that the preceding example does, except that
DOS is bypassed altogether and the BIOS is called directly.

#include <stdlib.h>
#include <dos.h>

Chapter XIV • System Calls 259

char GetAKey(void);
void OutputString(char *);

main(int argc, char ** argv)
{
 char str[128];
 union REGS regs;
 int ch;

 /* copy argument string; if none, use “Hello World” */
 strcpy(str, (argv[1] == NULL ? “Hello World” : argv[1]));

 while((ch = GetAKey()) != 27){
 OutputString(str);
 }

}

char
GetAKey()
{
 union REGS regs;

 regs.h.ah = 0; /* get character */
 int86(0x16, ®s, ®s);

 return((char)regs.h.al);
}

void
OutputString(char * string)
{
 union REGS regs;

 regs.h.ah = 0x0E; /* print character */
 regs.h.bh = 0;

 /* loop, printing all characters */
 for(;*string != ‘\0’; string++){
 regs.h.al = *string;
 int86(0x10, ®s, ®s);
 }
}

As you can see, the only changes were in the GetAKey() and OutputString() functions themselves. The
GetAKey() function bypasses DOS and calls the keyboard BIOS directly to get the character (note that in
this particular call, the key is not echoed to the screen, unlike in the previous example). The OutputString()
function bypasses DOS and calls the Video BIOS directly to print the string. Note the inefficiency of this
particular example—the C code must sit in a loop, printing one character at a time. The Video BIOS does
support a print-string function, but because C cannot access all the registers needed to set up the call to print
the string, I had to default to printing one character at a time. Sigh. Regardless, you can run this example
to produce the same output as is produced in the example before it.

C Programming: Just the FAQs260

Cross Reference:
XIV.2: How can I call DOS functions from my program?

XIV.4: How can I access important DOS memory locations
from my program?

Answer:
Like the DOS and BIOS functions, there are dozens of memory locations that contain useful and interesting
information about the computer. Need to know the current display mode without using an interrupt? It’s
in 40:49 hex (that’s segment 40, offset 49). Want to find out whether the user is currently pressing the Shift,
Ctrl, or Alt keys? That information is in 40:17. Want to write directly to the screen? Monochrome screens
start at 0xB000:0, color text mode and 16-color graphics modes (below 640×480 16 colors) start at
0xB800:0, and all other standard graphics modes (including 640×480 16 colors and up) start at 0xA000:0.
Refer to FAQ XIV.8 for more information. The following example shows how to print color text mode
characters to the screen. Note that this is a slight modification to the example used in the previous few
questions.

#include <stdlib.h>
#include <dos.h>

char GetAKey(void);
void OutputString(int,int,unsigned int,char *);

main(int argc, char ** argv)
{
 char str[128];
 union REGS regs;
 int ch, tmp;

 /* copy argument string; if none, use “Hello World” */
 strcpy(str, (argv[1] == NULL ? “Hello World” : argv[1]));

 /* print the string in red at top of screen */
 for(tmp=0;((ch = GetAKey()) != 27); tmp+=strlen(str)){
 OutputString(0,tmp,0x400,str);
 }

}

char
GetAKey()
{
 union REGS regs;

 regs.h.ah = 0; /* get character */
 int86(0x16, ®s, ®s);

 return((char)regs.h.al);
}

Chapter XIV • System Calls 261

void
OutputString(int row, int col, unsigned int videoAttribute, char *outStr)
{
 unsigned short far * videoPtr;

 videoPtr = (unsigned short far *)(0xB800L << 16);
videoPtr += (row * 80) + col; /* Move videoPtr to cursor position */
videoAttribute &= 0xFF00; /* Ensure integrity of attribute */

 /* print string to RAM */
 while(*outStr != ‘\0’){

 /* If newline was sent, move pointer to next line, column 0 */
 if((*outStr == ‘\n’) || (*outStr == ‘\r’)){
 videoPtr += (80 - (((int)FP_OFF(videoPtr) / 2) % 80));
 outStr++;
 continue;
 }

 /* If backspace was requested, go back one */
 if(*outStr == 8){
 videoPtr--;
 outStr++;
 continue;
 }

 /* If BELL was requested, don’t beep, just print a blank
 and go on */
 if(*outStr == 7){
 videoPtr++;
 outStr++;
 continue;
 }

 /* If TAB was requested, give it eight spaces */
 if(*outStr == 9){
 *videoPtr++ = videoAttribute | ‘ ‘;
 *videoPtr++ = videoAttribute | ‘ ‘;
 *videoPtr++ = videoAttribute | ‘ ‘;
 *videoPtr++ = videoAttribute | ‘ ‘;
 *videoPtr++ = videoAttribute | ‘ ‘;
 *videoPtr++ = videoAttribute | ‘ ‘;
 *videoPtr++ = videoAttribute | ‘ ‘;
 *videoPtr++ = videoAttribute | ‘ ‘;
 outStr++;
 continue;
 }

 /* If it was a regular character, print it */
 *videoPtr = videoAttribute | (unsigned char)*outStr;
 videoPtr++;
 outStr++;
 }

 return;

}

C Programming: Just the FAQs262

Obviously, printing text characters to the screen is a bit more complicated when you have to do it yourself.
I even made shortcuts by ignoring the meaning of the BELL character (to issue a beep) and a couple of other
special characters (although I did implement carriage return and linefeed). Regardless, this function performs
basically the same task as the previous examples, except that now you have control over the color of the
character and its position when printed. This example starts printing from the top of the screen. If you want
more examples of using memory locations, refer to FAQs XX.1, XX.12, and XX.17—these all use pointers
to low DOS memory to find useful information about the computer.

Cross Reference:
XIV.5: What is BIOS?

XX.1: How are command-line parameters obtained?

XX.12: How can I pass data from one program to another?

XX.17: Can you disable warm boots (Ctrl-Alt-Delete)?

XIV.5: What is BIOS?
Answer:

The Basic Input Output System, or BIOS, is the foundation of the personal computer’s operation. It is the
program that is executed first when the computer is powered up, and it is used by DOS and other programs
to access each piece of hardware inside the computer.

The bootup program, however, isn’t the only code in the computer that is called BIOS. In fact, the BIOS
that executes when the PC is turned on is typically called the Motherboard BIOS, because it is located on the
motherboard. Until recently, this BIOS was fixed in a ROM chip and could not be reprogrammed to fix bugs
and enhance the features. Today, the Motherboard BIOS is in an electronically reprogrammable memory
chip called Flash EPROM, but it is still the same old BIOS. Anyway, the Motherboard BIOS walks through
system memory to find other hardware in the system that also contains code foundational to its use (other
BIOS code). For example, your VGA card has its own BIOS physically located on the VGA card itself—it’s
usually called the Video BIOS or VGA BIOS. Your hard and floppy disk controller has a BIOS that is also
executed at boot time. People often will both refer to these collective programs as the BIOS and refer to a
specific individual BIOS as the BIOS. Neither reference is incorrect.

With all that said, you should know that BIOS is not DOS—BIOS is the lowest-level software functionality
available on the PC. DOS “sits on top of ” the BIOS and calls the BIOS regularly to perform routine
operations that you might mistakenly attribute to being a “DOS” function. For example, you might use DOS
function 40 hex to write data to a file on the hard disk. DOS actually performs this task by ultimately calling
the hard disk BIOS’s function 03 to actually write the data to the disk.

Cross Reference:
XIV.6: What are interrupts?

Chapter XIV • System Calls 263

XIV.6: What are interrupts?
Answer:

First of all, there are hardware interrupts and there are software interrupts. Interrupts provide a way for
different hardware and software “pieces” of the computer to talk to each other. That is their purpose, but
what are they, and how do they perform this communication?

The CPU (Central Processing Unit), which in the PC’s case is an Intel or clone 80x86 processor, has several
pins on it that are used to interrupt the CPU from its current task and make it perform some other task.
Connected to each interrupt pin is some piece of hardware (a timer, for example) whose purpose is to apply
a specific voltage on that CPU interrupt pin. When this event occurs, the processor stops executing the
software it is currently executing, saves its current operating state, and “handles” the interrupt. The processor
has already been loaded with a table that lists each interrupt number, and the program that is supposed to
be executed when that particular interrupt number occurs.

Take the case of the system timer. As part of the many tasks it has to perform, the PC must maintain the time
of day. Here’s how it works: A hardware timer interrupts the CPU 18 times every second. The CPU stops
what it is doing and looks in the interrupt table for the location of the program whose job it is to maintain
the system timer data. This program is called an interrupt handler, because its job is to handle the interrupt
that occurred. In this case, the CPU looks up interrupt eight in the table because that happens to be the system
timer interrupt number. The CPU executes that program (which stores the new timer data into system
memory) and then continues where it left off. When your program requests the time of day, this data is
formatted into the style you requested and is passed on to you. This explanation greatly oversimplifies how
the timer interrupt works, but it is an excellent example of a hardware interrupt.

The system timer is just one of hundreds of events (as interrupts are sometimes called) that occur via the
interrupt mechanism. Most of the time, the hardware is not involved in the interrupt process. What I mean
by that is that software frequently uses an interrupt to call another piece of software, and hardware doesn’t
have to be involved. DOS and the BIOS are two prime examples of this. When a program opens a file, reads
or writes data to it, writes characters to the screen, gets a character from the keyboard, or even asks for the
time of day, a software interrupt is necessary to perform each task. You might not know that this is happening
because the interrupts are buried inside the innocuous little functions you call (such as getch(), fopen(),
and ctime()).

In C, you can generate an interrupt using the int86() or int86x() functions. The int86() and int86x()
functions require an argument that is the interrupt number you want to generate. When you call one of these
functions, the CPU is interrupted as before and checks the interrupt table for the proper program to execute.
In these cases, typically a DOS or BIOS program is executed. Table XIV.6 lists many of the common
interrupts that you can call to set or retrieve information about the computer. Note that this is not a complete
list and that each interrupt you see can service hundreds of different functions.

C Programming: Just the FAQs264

Table XIV.6. Common PC interrupts.
Interrupt (hex) Description

5 Print Screen Services

10 Video Services (MDA, CGA, EGA, VGA)

11 Get Equipment List

12 Get Memory Size

13 Disk Services

14 Serial Port Services

15 Miscellaneous Function Services

16 Keyboard Services

17 Printer Services

1A Time of Day Services

21 DOS Functions

2F DOS Multiplex Services

33 Mouse Services

67 EMS Services

Now that you know what an interrupt is, you might realize that while your computer is just sitting idle, it
is probably processing dozens of interrupts a second, and it is often processing hundreds of interrupts each
second when it’s working hard. FAQ XX.12 includes an example of a program that enables you to write your
own interrupt handlers so that you can have two programs talk to each other through the interrupt. Check
it out if you find this stuff fascinating.

Cross Reference:
XX.12: How can I pass data from one program to another?

XIV.7: Which method is better, ANSI functions or BIOS
functions?

Answer:
Each method has its advantages and disadvantages. What you must do is answer a few questions to find out
which method is right for the application you need to create. Do you need to get your application out quickly?
Is it just a “proof of concept” or the “real thing”? Does speed matter? Do you need the approval of your inner
child? OK, so maybe your inner child doesn’t care, but the other questions should be answered before you
decide. The following list compares the basic advantages of ANSI versus BIOS functions:

Chapter XIV • System Calls 265

ANSI Advantages over BIOS

It requires only printf() statements to perform tasks
You can easily change text color and attributes
It works on every PC, regardless of configuration
You don’t need to memorize BIOS functions

BIOS Advantages over ANSI

It runs faster
You can do more things using BIOS
It does not require a device driver (ANSI requires ANSI.SYS)
You don’t need to memorize ANSI commands

What you will discover is that ANSI is a good place to start, and it will enable you to create some nice
programs. However, you will probably find that ANSI begins to “get in your way,” and you’ll soon want to
move on to BIOS functions. Of course, you’ll also find that the BIOS gets in your way sometimes, and you’ll
want to go even faster. For example, FAQ XIV.4 contains an example of avoiding even the BIOS to print
text to the screen. You’ll probably find that this method is more fun than ANSI or BIOS.

Cross Reference:
XIV.4: How can I access important DOS memory locations from my program?

XIV.8: Can you change to a VGA graphics mode using
the BIOS?

Answer:
Yes. Interrupt 10 hex, the Video BIOS, handles switching between text and graphics modes (among other
things). When you execute a program that changes from text mode to graphics mode and back (even if the
program is Microsoft Windows), the Video BIOS is requested to perform the change. Each different setting
is called a display mode.

To change the display mode, you must call the Video BIOS through the “int10” services. That is, you must
make interrupt calls to the interrupt handler at interrupt 10. This is just like making DOS calls (int21), except
the interrupt number is different. Following is a piece of sample code that calls Video BIOS function 0 to
switch from standard text mode (Mode 3) to a mode number from the command line and back:

#include <stdlib.h>
#include <dos.h>

main(int argc, char ** argv)
{
 union REGS regs;
 int mode;

 /* accept Mode number in hex */
 sscanf(argv[1], “%x”, &mode);

C Programming: Just the FAQs266

 regs.h.ah = 0; /* AH=0 means “change display mode” */
 regs.h.al = (char)mode; /* AL=??, where ?? is the Mode number */
 regs.x.bx = 0; /* Page number, usually zero */

 int86(0x10, ®s, ®s); /* Call the BIOS (int10) */

 printf(“Mode 0x%X now active\n”, mode);
 printf(“Press any key to return... “);
 getch();

 regs.h.al = 3; /* return to Mode 3 */
 int86(0x10, ®s, ®s);
}

One interesting feature of this particular function that isn’t shown here is the capability to change display
modes without clearing the screen. This feature can be extremely useful in certain circumstances. To change
modes without affecting screen contents, simply OR hex 80 to the display mode value you place into the AL
register. For instance, if you want to switch to mode 13 (hex), you put hex 93 in AL. The remaining code
stays unchanged.

Today, VGA cards also adhere to the VESA Video BIOS standard in their support of the extended display
modes (see the following sidebar for an explanation). However, it requires a new “change display mode”
function to support these extended modes. Per the VESA standard, you use function hex 4F rather than
function 0 in the preceding example to switch VESA modes. The following example code is a modification
of the preceding example to incorporate VESA mode numbers.

#include <stdlib.h>
#include <dos.h>

main(int argc, char ** argv)
{
 union REGS regs;
 int mode;

 /* accept Mode number in hex */
 sscanf(argv[1], “%x”, &mode);

 regs.x.ax = 0x4F02; /* change display mode */
 regs.x.bx = (short)mode; /* three-digit mode number */

 int86(0x10, ®s, ®s); /* Call the BIOS (int10) */

 if(regs.h.al != 0x4F){
 printf(“VESA modes NOT supported!\n”);
 }
 else{
 printf(“Mode 0x%X now active\n”, mode);
 printf(“Press any key to return... “);
 getch();
}
 regs.h.al = 3; /* return to Mode 3 */
 int86(0x10, ®s, ®s);
}

Chapter XIV • System Calls 267

Note that this now conflicts with that hex 80 “don’t clear the screen” value. For VESA, it has simply moved
from the high-order bit of the two-digit number to the high-order bit of the three-digit value (all VESA modes
are three digits in size—again, see the sidebar for details). Therefore, to change to VESA mode 101, you make
the VESA mode number 901, and the screen’s contents will be preserved.

All About Display Modes
IBM created a display mode standard that attempted to define all the display modes that could ever
possibly be needed. These included all the possible pixel depths (number of colors) that would ever
be needed. So IBM created 19 display modes (numbered from 0 to 13 hex). Table XIV.8a shows
the display mode standard.

Table XIV.8a. Standard display modes.
Mode Resolution Graphics or Text? Colors

0 40×25 Text Monochrome

1 40×25 Text 16

2 80×25 Text Monochrome

3 80×25 Text 16

4 320×200 Graphics 4

5 320×200 Graphics 4 grays

6 640×200 Graphics Monochrome

7 80×25 Text Monochrome

8 160×200 Graphics 16

9 320×200 Graphics 16

A 640×200 Graphics 4

B Reserved for EGA BIOS use

C Reserved for EGA BIOS use

D 320×200 Graphics 16

E 640×200 Graphics 16

F 640×350 Graphics Monochrome

10 640×350 Graphics 4

11 640×480 Graphics Monochrome

12 640×480 Graphics 16

13 320×200 Graphics 256

See anything you recognize? Mode 3 is the 80×25 color text mode that you see when you turn on
your PC. Mode 12 is what you get when you select “VGA” as your Microsoft Windows 3.x driver
(you know, the one that comes with Windows). Note the lack of any display mode featuring more

continues

C Programming: Just the FAQs268

than 256 colors, or higher than 640×480 resolution. Modes 4, 9, and D for many years were the
popular choice of DOS game makers, featuring a “big” resolution of 320×200 and enough colors
(4 or 16) to display decent graphics. Mode 13 is the display mode used for just about all the popular
action games, including DOOM (I and II), id Software’s new Heretic, Apogee’s Rise of the Triad,
Interplay’s Descent, and many others. In truth, many of these action games perform little tricks
on the VGA cards that convert Mode 13 into 320×240, with more memory pages to improve
graphics appearance and speed—they call it Mode X.

So where did all the other display modes, the ones you’re used to, come from? They were made
up by VGA card manufacturers. The other display modes you might be familiar with (800×600,
1024×768, 1280×1024, and even 1600×1200) come from a “melting pot” of sources, but
regardless of their origins, the VGA card makers put them on their VGA cards to increase the cards’
value. Such modes are usually called extended display modes. Thanks to the wonders of competition
and capitalism, the card makers migrated toward these higher display modes. Others have been
tried (ever heard of 1152×900?) but weren’t received as well as these modes.

OK, so what is VESA, and what does it have to do with VGA cards? Although the VGA card makers
all chose to support the same display modes (even the extended ones), each implemented these
extended modes in its own proprietary way. Game and productivity software makers were stressed
to support each proprietary method of each VGA card on the market. A group of manufacturers
and other representatives formed a committee to standardize as much as possible the setup and
programming of these cards. VESA (Video Electronics Standards Association) is this committee.
The VESA committee adopted a standard of the extended display modes so that software could
make common BIOS calls that would set up and initialize all VGA cards that adhered to this
standard. It probably is safe to say that 100 percent of all VGA cards sold in the United States
support the VESA standard in one form or another.

All VESA modes (which is what the standardized set of display modes is called) utilize mode
numbers that are nine bits wide rather than the eight-bits-wide standard mode. Having a nine-bit
mode number allows the VESA modes to be three hex digits long rather than two in the IBM
standard (the ones from 0 to 13 hex shown in Table XIV.8a), thereby avoiding a numbering
conflict. Therefore, all VESA mode values are above 100 hex. Here’s how the VESA modes work:
You want to program your VGA card to display 1024×768 at 256 colors, which happens to be
VESA mode 105. You make a BIOS call using 105 as the display mode number. The VESA mode
number is translated into the internal proprietary number by the Video BIOS (sometimes called
the VESA BIOS) to actually perform the mode switch. VGA card manufacturers supply a VESA
BIOS with each VGA card to perform these translations so that all you have to worry about is the
VESA number. Table XIV.8b shows the latest list of VESA display modes (it is an ever-evolving
standard).

Table XIV.8b. VESA display modes.
Resolution Colors VESA Mode

640×400 256 100

640×480 256 101

Chapter XIV • System Calls 269

640×480 32,768 110

640×480 65,536 111

640×480 16.7 million 112

800×600 16 102

800×600 256 103

800×600 32,768 113

800×600 65,536 114

800×600 16.7 million 115

1024×768 16 104

1024×768 256 105

1024×768 32,768 116

1024×768 65,536 117

1024×768 16.7 million 118

1280×1024 16 106

1280×1024 256 107

1280×1024 32,768 119

1280×1024 65,536 11A

1280×1024 16.7 million 11B

Notice that these are the modes you are accustomed to seeing, especially if you use Microsoft
Windows.

Cross Reference:
XIV.6: What are interrupts?

XIV.9: Does operator precedence always work (left to right,
right to left)?

Answer:
If you mean “Does a right-to-left precedence operator ever go left to right, and vice versa?” the answer
is no. If you mean “Can a lower-order precedence ever be risen above a higher-order precedence?” the
answer is yes. Table XIV.9 lists the order of each operator from top to bottom (highest order to lowest) and
shows each operator’s associativity.

Resolution Colors VESA Mode

C Programming: Just the FAQs270

Table XIV.9. Operator precedence.
Operator Associativity

() [] -> . Left to right

! ~ ++ -- - (typecast) * & sizeof Right to left

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= Right to left

, Left to right

Note in the table that the != operator takes precedence over the = operator (in fact, practically everything
takes precedence over the = operator). The following two source lines illustrate how precedence of one
operator over another can get a programmer into trouble:

while(ch = getch() != 27) printf(“Got a character\n”);
while((ch = getch()) != 27) printf(“Got a character\n”);

Obviously, the purpose of this code is to get a character from the keyboard and check it against decimal 27
(the Escape key). Unfortunately, in source line one, the getch() is compared to the Escape key. The resulting
test (which will return a TRUE or FALSE), not the character from the keyboard, is placed into ch. This is due
to the precedence of the != operator over the = operator.

In the second source line, a set of parentheses was added to surround the ch = getch() operation. Because
parentheses are the highest order of precedence, the keyboard character is placed into ch, then checked against
the Escape key. This final check will return TRUE or FALSE to the while statement, which is exactly what is
desired (while this statement is TRUE, print this sentence). As a matter of detail, it should be pointed out that
ch is not checked against 27; the result of the parenthetical statement ch = getch() is checked against 27.
It might not make much difference in this case, but parentheses can really change the way code is created
and executed. In the case of statements with multiple parenthetical statements, the code is executed from the
innermost set of parentheses to the outermost, from left to right.

Note that the associativity in each operator’s individual case (left to right or right to left) does not change,
but the order of precedence does.

Chapter XIV • System Calls 271

Cross Reference:
None.

XIV.10: Should a variable’s type be declared within the header
of a function or immediately following? Why?

Answer:
The ANSI standard is to declare a variable’s type within the header of the function. As you’ll discover in
Chapter XX, C was originally designed to run on the UNIX operating system back in the ’70s. Naturally,
this was before any sort of C ANSI standard. The declaration method for the original C compilers was to
put the argument’s type immediately after the function header.

Today, the ANSI standard dictates that the type be declared within the function’s header. The problem with
the old method was that it didn’t allow for argument function type checking—the compiler could perform
only return value checking. Without argument checking, there is no way to see whether the programmer is
passing incorrect types to a function. By requiring arguments to be inside the function’s header, and by
requiring you to prototype your functions (including the argument types), the compiler can check for
incorrect parameter passing in your code.

Cross Reference:
XIV.11: Should programs always include a prototype for main()?

XIV.11: Should programs always include a prototype for
main()?

Answer:
Sure, why not? Including the prototype is not required, but it is good programming practice. Everyone knows
what the argument types are for main(), but your program can define the return type. You’ve probably
noticed in the examples in this chapter (and possibly in other chapters) that main() is not prototyped, that
no explicit return type is shown in the main() body itself, and that main() does not even contain a return()
statement. By writing the examples in this way, I have implied a void function that returns an int. However,
because there is no return() statement, a garbage value will be returned. This is not good programming
practice. Good programming practice dictates a function prototype even for main(), and a proper return
value for that prototype.

Cross Reference:
XIV.12: Should main() always return a value?

C Programming: Just the FAQs272

XIV.12: Should main() always return a value?
Answer:

Your main() does not always have to return a value, because the calling function, which is usually
COMMAND.COM, does not care much about return values. Occasionally, your program could be in a
batch file that checks for a return code in the DOS errorLevel symbol. Therefore, return values from main()
are purely up to you, but it is always good to return a value to the caller just in case.

Your main() can return void (or have no return statement) without problems.

Cross Reference:
XIV.11: Should programs always include a prototype for main()?

XIV.13: Can I control the mouse using the BIOS?
Answer:

Yes. You can communicate with mouse services by using interrupt 33 hex. Table XIV.13 lists the most
common mouse services available at interrupt 33.

Table XIV.13. Mouse interrupt services.
Number Description

0 Initialize Mouse; Hide If Currently Visible

1 Show Mouse

2 Hide Mouse

3 Get Mouse Position

4 Set Mouse Position

6 Check Whether Mouse Buttons Are Down

7 Set Horizontal Limits on Mouse

8 Set Vertical Limits on Mouse

9 Set Graphics Mode Mouse Shape

10 Set Text Mode Mouse Style

11 Get Mouse Delta Movement

The following example code uses a few of the preceding mouse routines to manipulate a text mode mouse:

#include <stdlib.h>
#include <dos.h>

main()

Chapter XIV • System Calls 273

{
 union REGS regs;

 printf(“Initializing Mouse...”);
 regs.x.ax = 0;
 int86(0x33, ®s, ®s);

 printf(“\nShowing Mouse...”);
 regs.x.ax = 1;
 int86(0x33, ®s, ®s);

 printf(“\nMove mouse around. Press any key to quit...”);
 getch();

 printf(“\nHiding Mouse...”);
 regs.x.ax = 2;
 int86(0x33, ®s, ®s);

 printf(“\nDone\n”);
}

When you run this example, a flashing block cursor that you can move around will appear on-screen. Using
function 3, you can query the mouse handler for the position of the mouse at any time. In fact, I wrote an
entire set of mouse library routines using the functions in Table XIV.13 that are incorporated into many of
my text mode DOS programs.

To access these functions, you must have a mouse driver loaded. Typically, this occurs in AUTOEXEC.BAT,
where a DOS mouse driver is loaded. However, it is becoming common to have only a Windows mouse
driver loaded at Windows runtime. In that case, you will have to be running in a DOS shell to access the
mouse functions.

Cross Reference:
None.

C Programming: Just the FAQs274

