CHAPTER

¢
Windows

Microsoft Windows is a graphical environment that runs atop MS-DOS on IBM-
compatible PCs. Since the introduction of version 3.0 in 1990, Windows has boomed as
a standard for PC programs.

As a C programmer writing applications under Windows, you will face many challenges
because it is unlike any environment you have ever encountered. This chapter will present
several questions you might have regarding programming in the Windows environment
and will attempt to provide concise answers to these questions. However, you should not
rely on this chapter alone for your technical information when working with Windows.

Instead, if you haven't done so already, you should rush out and get a copy of Programming
Windows 3.1 by Charles Petzold. This is the definitive reference and tutorial regarding
Windows programming. Petzold starts the book with brief discussions regarding the
background of Windows and then takes you step-by-step through the details of Windows
programming. If you really want to learn how to write Microsoft Windows programs in
C, you need this book. Another good book is Teach Yourself Windows Programming in
21 Days, from Sams Publishing.

Another reference that will come in handy when you're learning Windows programming
is the Microsoft Developer Network CD. This is a CD-ROM that comes packed with
samples from all sources. Many of the sample programs can be cutand pasted directly into
your compiler.

If you have briefly studied Windows, this chapter should help answer some of your
recurring questions.

386

C Programming: Just the FAQs

XX1.1: Can printf() be used in a Windows program?
Answer:

The standard C function printfQ can be used in a Microsoft Windows program; however, it has no
usefulness to the Windows environment, and it does not produce the same result as in a DOS environment.
The printf() function directs program output to stdout, the standard output device. Under DOS, the
standard output device is the user’s screen, and the output of a printf() statement under a DOS program
is immediately displayed.

Conversely, Microsoft Windows is an operating environment that runs on top of DOS, and it has its own
mechanism for displaying program output to the screen. This mechanism comes in the form of what is called
adevice context. A device context is simply a handle to a portion of the screen that is handled by your program.
The only way to display output on-screen in the Microsoft Windows environment is for your program to
obtain a handle to a device context. This task can be accomplished with several of the Windows SDK
(Software Development Kit) functions. For instance, if you were to display the string “Hel 1o from Windows!”
in a windows program, you would need the following portion of code:

void print_output(void)

{
hdcDeviceContext = BeginPaint(hwndWindow, psPaintStruct);
DrawText(hdcDeviceContext, “Hello from Windows!”, -1,
&rectClientRect, DT_SINGLELINE);
}

Put simply, all output from a Windows program must be funnelled through functions provided by the
Windows API. If you were to put the line

printf(““Hello from Windows!”);

into the preceding example, the output would simply be ignored by Windows, and your program would
appear to print nothing. The output is ignored because printf() outputs to stdout, which is not defined
under Windows. Therefore, any C function such as print£() (or any other function that outputs to stdout)
under the Windows environment is rendered useless and should ultimately be avoided.

Note, however, that the standard C function sprintf(), which prints formatted output to a string, is
permissible under the Windows environment. This is because all output from the sprintf(function goes
directly to the string and not to stdout.

Cross Reference:

XX1.9: What is the difference between Windows functions and standard DOS functions?

Chapter XXI = Windows 387

XX1.2: How do you create a delay timer in a
Windows program?
Answer:

You can create a delay timer in a Windows program by using the Windows API function setTimer(). The
setTimer() function sets up a timer event in Windows to be triggered periodically at an interval that you
specify. To create a timer, put the following code in your winmain() function:

SetTimer(hwnd, 1, 1000, NULL);

This code sets up a timer in Windows. Now, every 1000 clock ticks (1 second), your program receives a
wn_TIMER message. This message can be trapped in your wndproc (message loop) function as shown here:

switch (message)

{
case WM_TIMER :
/* this code is called in one-second intervals */
return 0 ;
3

You can put whatever you like in the wm_T1meR section of your program. For instance, FAQ XXI.23 shows
how you might display the date and time in a window’s title bar every second to give your users a constant
update on the current day and time. Or perhaps you would like your program to periodically remind you
to save your work to a file. Whatever the case, a delay timer under Windows can be very handy.

To remove the timer, call the ki tiTimer) function. When you call this function, pass it the handle to the
window the timer is attached to and your own timer identifier. In the preceding setTimer() example, the
number 1 isused as the timer identifier. To stop this particular timer, you would issue the following function
call:

KillTimer(hwnd, 1);

Cross Reference:

None.

XXI.3: What is a handle?
Answer:

Ahandle under Windows is much like ahandle used to refer toafilein C. Itissimply anumeric representation
of an object. Under Windows, a handle can refer to a brush (the object that paints the screen), a cursor, an
icon, awindow, a device context (the object that is used to output to your screen or printer), and many other
objects. The handle assigned to an object is used to reference it when calling other Windows functions.

388

C Programming: Just the FAQs

Handle numbers are assigned by Windows, usually when a Windows API function call is made in your
program. Typically, variables that represent handles are prefixed with the letter h and a mnemonic
representation of the object they refer to. For instance, to create a window, you might make the following
Windows API call:

hwndSample =

CreateWindow(szApplicationName, /* Window class name */
“FAQ Sample Program”, /* Caption for title bar */
WS_OVERLAPPEDWINDOW, /* Style of window */
CW_USEDEFAULT, /* Initial x position */
CW_USEDEFAULT, /* Initial y position */
CW_USEDEFAULT, /* Initial x size */
CW_USEDEFAULT, /* Initial y size */
NULL, /* Window handle of parent window */
NULL, /* Menu handle for this window */
hinstance, /* Instance handle */
NULL) ; /* Other window parameters */

The Windows API function createwindow() is used to create an instance of a window on the screen. Asyou
can see from the preceding example, it returns a handle to the window that is created. Whenever this window
is referenced from this point on, the handle variable hwndsample is used. Windows keeps track of handle
numbers internally, so it can dereference the handle number whenever you make a Windows API function
call.

Cross Reference:

None.

XX1.4: How do you interrupt a Windows program?
Answer:

As a user of Microsoft Windows, you might already know that you can terminate a Windows program in
many ways. Here are just a few methods:
[Choose File | Exit from the pull-down menu.
Choose Close from the control box menu (-) located to the left of the title bar.
Double-click the mouse on the control box.
Press Ctrl-Alt-Delete.
Choose End Task from the Windows Task Manager.
0 Exit Windows.

O 0Oo0oo

This list includes the more typical ways users exit their Windows programs. As a Windows developer, how
can you provide a way for users to interrupt your program?

If you have used many DOS programs, you might remember the key combination Ctrl-Break. This
combination was often used to break out of programs that were hung up or that you could not figure a way
to get out of. Often, DOS programs would not trap the Ctrl-Break combination, and the program would
be aborted. DOS programs could optionally check for this key combination and prevent users from breaking
out of programs by pressing Ctrl-Break.

Chapter XX1 = Windows 389

Under Windows, the Ctrl-Break sequence is translated into the virtual key vk_canceL (see FAQ XXI1.17 for
an explanation of virtual keys). One way you can trap for the Ctrl-Break sequence in your Windows program
is to insert the following code into your event (message) loop:

switch (message)

{
case WM_KEYDOWN:
if (wParam == VK_CANCEL)
{
/* perform code to cancel or
interrupt the current process */

}

3

In the preceding example program, if the wearam parameter is equal to the virtual key code vk_CANCEL, you
know that the user has pressed Ctrl-Break. Thisway, you can query the user as to whether he wants to cancel
the current operation. This feature comes in handy when you are doing long batch processes such as printing
reports.

Cross Reference:

None.

XXI.5: What 1s the GDI and how Is It accessed?
Answer:

GDl stands for Graphic Device Interface. The GDI is a set of functions located in a dynamic link library
(named GDI.EXE, inyour Windows system directory) that are used to support device-independent graphics
output on your screen or printer. Through the GDI, your program can be run on any PC that supports
Windows. The GDI is implemented at a high level, so your programs are sheltered from the complexities
of dealing with different output devices. You simply make GDI calls, and Windows works with your graphics
or printer driver to ensure that the output is what you intended.

The gateway to the GDI is through something called a Device Context. A device context handle is simply
anumeric representation of a device context (that is, a GDI-supported object). By using the device context
handle, you can instruct Windows to manipulate and draw objects on-screen. For instance, the following
portion of code is used to obtain a device context handle from Windows and draw a rectangle on-screen:

long FAR PASCAL _export WndProc (HWND hwnd, UINT message,
UINT wParam, LONG IParam)

{

HDC hdcOutput;

390 C Programming: Just the FAQs

PAINTSTRUCT psPaint;
HPEN hpenDraw;
switch(message)

{

case WM_PAINT:
hdcOutput = BeginPaint(hwndMyWindow, &psPaint);
hpenDraw = CreatePen(PS_SOLID, 3, OL);
SelectObject(hdcOutput, hpenDraw);
Rectangle(hdcOutput, 0, 0, 150, 150);

TextOut(hdcOutput, 200, 200,
“Just the FAQ’s, Ma’am...”, 24);

}

In the preceding program, the BeginPaint() function prepares the current window to be painted with
graphics objects. The createPen() function creates a pen object of a specified style, width, and color. The
penisused to paint objects on-screen. The selectobject() function selects the GDI object you want towork
with. After these setup functions are called, the Rectangle () function is called to create a rectangle in the
window, and the Textout() function is called to print text to the window.

Cross Reference:

None.

XX1.6: Why is windows.h important?
Answer:

The windows.h header file contains all the definitions and declarations used within the Windows
environment. For instance, all system color constants (see FAQ XX1.25) are defined in this header file.
Additionally, all Windows-based structures are defined here. Each Windows API function is also declared
in this header.

No Windows program can be created without the inclusion of the windows.h header file. This is because
all Windows API functions have their declarations in this file, and without this file, your program will
probably receive a warning or error message that there is no declaration for the Windows function you are

Chapter XX1 = Windows 391

calling. All Windows-based structures, such as Hoc and PAINTSTRUCT, are defined in the windows.h header
file. You therefore will get compiler errors when you try to use any Windows-based structures in your
program without including the windows.h file. Additionally, Windows contains numerous symbolic
constants that are used throughout Windows programs. Each of these constants is defined in the windows.h
header file.

Thus, the windows.h header file is extremely important, and no Windows program can exist without it. It
is roughly equivalent (regarding the rules of inclusion) to the standard stdio.h file that you always include
in any DOS-based C program. Not including the file can bring several compiler warnings and errors.

Cross Reference:

XXI.7: What is the Windows SDK?
XX1.8: Do you need Microsoft’s Windows SDK to write Windows programs?

XXI.7: What 1s the Windows SDK?
Answer:

The Windows SDK (Software Development Kit) is a set of resources (software and manuals) that are
available to the C programmer to construct Windows programs with. The Windows SDK includes all the
Windows API function libraries, thus enabling you to link your C programs with the Windows API
functions. It also includes a handful of useful utilities such as the Image Editor (for creating and modifying
icons, bitmaps, and so on). It includes the executable file WINSTUB.EXE, which is linked with each
Windows program to notify users that the executable is a Windows program. For instance, if you have ever
tried running a Windows program from the DOS prompt, you probably have seen one of the following
messages (or something similar):

This program requires Microsoft Windows.
This program must be run under Microsoft Windows.

The WINSTUB.EXE program automatically prints this message every time someone tries to run aWindows
executable from a non-Windows environment. Note that the WINSTUB.EXE program is not separated,
but rather is embedded into your Windows executable. It is transparent to you and the users of your
programs.

The Windows SDK also includes extensive printed documentation of each Windows API function call. This
documentation comes in handy when you are writing Windows programs. The Programmer’s Reference
Guide details how to use each Windows API function.

With all the utilities, libraries, and documentation included with the Windows SDK, you might be inclined
tothink that the Windows SDK is required in order to produce Windows-based programs. See the next FAQ
for a response.

Cross Reference:

XX1.6: Why is windows.h important?
XX1.8: Do you need Microsoft’s Windows SDK to write Windows programs?

392 C Programming: Just the FAQs

XX1.8: Do you need Microsoft’s Windows SDK to write
Windows programs?

Answer:

No. You do not need to purchase the Windows SDK from Microsoft to produce Windows programs—
instead, most of today’s compilers include the Windows libraries, utilities, and online documentation that
is replicated in the SDK.

When Windows was first introduced, Microsoft was the only vendor that had a C compiler capable of
producing Windows programs. Simply purchasing the Microsoft C compiler did not enable you to create
Windows programs, however. Instead, you were required to purchase the Windows SDK from Microsoft
to allow your Microsoft C compiler to create your Windows programs.

With the advent of Borland C++in 1990, the SDK was no longer required. This is because Borland licensed
the Windows libraries from Microsoft so that the developers who used Borland C++ did not need to purchase
the Windows SDK. Borland also included its own Windows utilities and documentation so that a developer
would be fully equipped to write Windows applications. This, in effect, started a revolution. From this point
on, compiler vendors typically licensed the Windows API libraries and included them in their compilers.
Even Microsoft, pressured by competition, dropped the SDK “requirement” with the introduction of
Microsoft C/C++ 7.0.

Today, you can purchase pretty much any compiler that is Windows-capable without having to spend
hundreds of extra dollars to buy the Windows SDK. Instead, you will find that your Windows-based
compiler comes with all the necessary libraries, utilities, and documentation. In most cases, the Windows
API documentation is provided online and not in hard copy to save distribution expenses.

Cross Reference:

XXI1.6: Why is windows.h important?
XXI.7: What is the Windows SDK?

XXI1.9: What 1s the difference between Windows functions and
standard DOS functions?

Answer:

Unlike most DOS functions, Windows functions are always declared as FAR PAscAL. The FAR keyword
signifies that the Windows API function is located in a different code segment than your program. All
Windows API function calls are declared as FAR, because all the Windows functions are located in dynamic
link libraries and must be loaded at runtime into a different code segment than the one you are running your
program in.

The pascaL keyword signifies that the pascal calling convention is used. The pascal calling convention is
slightly more efficient than the default C calling convention. With regular non-pascal function calls, the

Chapter XX1 = Windows 393

parameters are pushed on the stack from right to left beginning with the last parameter. The code calling the
function is responsible for adjusting the stack pointer after the function returns. With the pascal calling
sequence, the parameters are pushed on the stack from left to right, and the called function cleans up the stack.
This method results in greater efficiency.

Note that the capitalized words FAR and pascaL are really uppercase representations of their lowercase
keywords, far and pascal. Windows simply #defines them as uppercase to comply with notation rules. Also
note that DOS functions can optionally be declared as far pascal—this is perfectly legal. However, under
Windows, all API functions are FAR PASCAL. This is not an option, but a mandatory requirement of the
Windows environment.

Cross Reference:

XXI1.1: Can printf() be used in a Windows program?

XX1.10: What is dynamic linking?
Answer:

All Windows programs communicate with the Windows kernel through a process known as dynamic
linking. Normally, with DOS programs, your programs are linked statically. This means that your linker
resolvesall unresolved external function calls by pulling in the necessary object code modules (.OBJs) to form
an executable file (.EXE) that contains the executable code for all functions called within your program.

The Windows environment, on the other hand, provides too many functions to be linked statically into one
executable program. A statically linked program under Windows would probably be several megabytes in
size and horribly inefficient. Instead, Windows makes extensive use of dynamic link libraries. Dynamic link
libraries (.DLLs) are somewhat like the C libraries you create under DOS, with the exception that DLLs can
be loaded dynamically at runtime and do not have to be linked in statically at link time. This method has
several advantages. First, your Windows executables are typically small, relying on calls to DLLs to provide
runtime support. Second, Windows can load and discard DLLs on demand—uwhich allows Windows to fine-
tune its environment at runtime. Windows can make room for more programs if it can dynamically discard
functions that are not being used currently.

How does dynamic linking work? It is not an easy process by any means. First of all, when you link your
Windows program, your compiler creates a table in your executable file that contains the name of the
dynamic link library referenced and an ordinal number or name that represents that function in that dynamic
link library. At runtime, when you reference a function call that is located in a dynamic link library, that DLL
is loaded into memory, and the function’s entry point is retrieved from your executable’s DLL table. When
the DLL is no longer needed, it is unloaded to make room for other programs.

Dynamic link libraries are typically used for large programs with many functions. You can create a DLL with
your compiler—see your compiler’s documentation for specific instructions on how to carry out this task.

Cross Reference:

None.

394

C Programming: Just the FAQs

XXI.11: What are the differences among HANDLE, HWND,
and HDC?

Answer:

Under Windows, the symbolic names HANDLE, HWND, and Hpc have different meanings, as presented in Table

XXI.11.

Table XXI.11. Symbolic names and their meanings.

Symbolic Name Meaning

HANDLE Generic symbolic name for a handle
HWND Handle to a window

HDC Handle to a device context

It is a Windows standard to make symbolic names uppercase. As FAQ XXI.3 explains, a handle under
Windows is simply a numeric reference to an object. Windows keeps track of all objects through the use of
handles. Because window objects and device context objects are used quite often under Windows, they have
their own handle identifier names (Hwnp for window and Hoc for device context). Many other standard handle
names exist under Windows, such as HerusH (handle to a brush), Hcursor (handle to a cursor), and Hicon
(handle to an icon).

Cross Reference:

None.

XX1.12: Are Windows programs compatible from one compiler
to the next?

Answer:

All compilers available for development of Microsoft Windows programs must support the Microsoft
Windows SDK (Software Development Kit), and therefore the Windows functions you use in your
programs are compatible across compilers. A typical Windows program developed in standard C using only
Windows API calls should compile cleanly for all Windows-compatible compilers. The functions provided
in the Windows API are compiler-independent and easy to port between compilers such as Borland C++,
Microsoft Visual C++, and Symantec C++.

Most of the Windows-based programs on the market today, however, use C++ class libraries to augment and
simplify the complexity of using the Windows SDK. Some class libraries, such as Microsoft’s Foundation
Class Library (MFC) and Borland’s ObjectWindows Library (OWL), are compiler-specific. This means that
you cannot take a Windows program developed with MFC using Microsoft’s Visual C++ and port it to

Chapter XX1 = Windows 395

Borland C++, nor can you take a Windows program developed with OWL using Borland C++ and port it
to Visual C++. Some class libraries, such as zApp and Zinc, are compiler-independent and are thus safer to
use when multiple compilers must be supported.

Note that if you are using C++ for your Windows development, you should pay close attention to your
compiler’s adherence to ANSI-standard C++, because there are different levels of support for ANSI C++
between compilers. For instance, some compilers have full support for C++ templates, whereas others do not.
Ifyou were to write a Windows program using templates, you might have a hard time porting your code from
one compiler to another.

Typically, though, if you are developing with ANSI-standard C and the Microsoft Windows API, your code
should be 100 percent portable to any other Windows-compatible compiler.

Cross Reference:

None.

XX1.13: Will Windows always save and refresh your
program’s windows?
Answer:

No. Windows itself is not responsible for saving and restoring your program’s windows. Instead, Windows
sends a message to your program—the wm_PAINT message—that notifies your program that its client area
needs repainting.

The client area refers to the portion of the screen that your program is in control of—that is, the portion of
the screen occupied by your program’s windows. Whenever another program overlays your program with
another window, your client area is covered by that application’s window. When that application’s window
is removed, Windows sends a wv_PAINT message to your program. Your Windows program should contain
an event loop that looks for and responds to such messages. When your program receives the wv_pAINT
message, you are responsible for initiating the appropriate code to repaint your application’s window.

The wm_PAINT message is generated by Windows when one of the following events occurs:

[J A previously hidden portion of your program’s client area is uncovered.
[Your application’s window is moved or resized.

[Your application’s window is scrolled by the use of a scrollbar.

[A pull-down or pop-up menu is invoked.

Additionally, you can force your program to repaint the screen (thus generating a wm_pAINT message to your
own program) by calling the Windows API function InvalidateRect().

Your program should contain an event loop that captures incoming messages and responds to them. Here
is an example of a typical event loop that responds to a wM_PAINT message:

switch(message)

{

396

C Programming: Just the FAQs

case WM_PAINT:
hdcOutput = BeginPaint(hwndMyWindow, &psPaint);
hpenDraw = CreatePen(PS_SOLID, 3, OL);
SelectObject(hdcOutput, hpenDraw);
Rectangle(hdcOutput, 0, 0, 150, 150);

TextOut(hdcOutput, 200, 200, “Just the FAQ’s, Ma’am...”, 24);

}

When the preceding program is run, awm_PAINT message is generated by Windows on program start-up and
any time the client area is moved, resized, or scrolled.

It should be noted that actions such as cursor movement and drag-and-drop operations do not require a
wM_PAINT message to be generated. In these cases, Windows saves and restores the portion of the screen that
has been covered with the cursor or icon.

Cross Reference:

XXI1.14: How do you determine a Windows program’s client area size?

XXI.14: How do you determine a Windows program’s
client area size?

Answer:

Your program’s client area size is defined as the height and width of your program’s window that is displayed
on-screen. The client area size can be determined by processing the wm_s1zE message in your program’s event
loop. The wm_s1zE message contains three parameters, two of which can be used to determine your client
area size. Your program’s event loop (window procedure) is passed a parameter named 1param that can be
evaluated when a wm_s1ze message is received. The low-order word of the 1param variable contains your
program’s client area width, and the high-order word of the 1Param variable contains your program’s client
area height. Here is an example of determining client area size:

switch (message)

{

case WM_SIZE:

nProgramWidth = LOWORD(IParam);

Chapter XXI = Windows 397

nProgramHeight = HIWORD(IParam);

¥

Loworp and Hiworp are actually macros defined in windows.h that extract the low-order and high-order
words, respectively.

Cross Reference:

XX1.20: Can a mouse click be captured in an area outside your program’s client area?

XXI.15: What are OEM key codes?
Answer:

The OEM (Original Equipment Manufacturer) key codes refer to the original 255 characters preprogrammed
into all IBM-compatible ROMs—everything from hex 00 to hex FF. These characters not only represent
the uppercase and lowercase characters of the alphabet, but also contain several nonprintable characters (tab,
bell, carriage return, linefeed, and such) and several “graphical” characters used for line drawing. This
character set also contains some symbols for representing fractions, pi, infinity, and others. Many DOS-
based programs use this character set to print graphics on-screen, because these 255 characters are the only
ones available for DOS to use.

Cross Reference:

XX1.16: Should a Windows program care about the OEM key codes?
XX1.17: What are virtual key codes?
XX1.18: What is a dead key?

XX1.16: Should a Windows program care about the OEM
key codes?

Answer:

No. As FAQ XXI.15 explains, OEM key codes refer to the original 255 characters of the IBM character set
that comes preprogrammed into every 80x86 ROM.

Many of these characters were used in older DOS-based programs to represent characters that normally
would have required graphics. Because Windows is a graphical environment that contains hundreds of
functions for creating graphical objects, these characters are no longer needed. Instead of writing Windows
functions to use the OEM character set to draw a rectangle, for instance, you can simply call the Windows
API function Rectangle(). Thus, the OEM character codes are not needed in Windows, and you can
effectively ignore them when writing your Windows programs.

398 C Programming: Just the FAQs

Note that although you can ignore these key codes, Windows cannot. For instance, you probably already
know that many of your DOS programs can be run in a window under Windows. When this is the case,
Windows must “interpret” the DOS program’s use of the OEM character set and map it accordingly
on-screen.

Cross Reference:
XXI1.15: What are OEM key codes?
XX1.17: What are virtual key codes?
XX1.18: What is a dead key?

XXI1.17: What are virtual key codes?
Answer:

When your program receives a wm_KEYUP, WM_KEYDOWN, WM_SYSKEYUP, OF WM_SYSKEYDOWN message, the wparam
parameter will contain the keystroke’s virtual key code. This virtual key code can be used to reference what
key on the keyboard was pressed. The key code does not map to any physical character set (such as the OEM
key codes—see FAQ XXI.16), but rather it originates from a “virtual” table (set forth in windows.h) of key
codes. Table XXI.17 lists some available virtual key codes.

Table XXI.17. Some of the virtual key codes available in Windows programs.

Hex Symbolic Name Key

01 VK_LBUTTON N/A

02 VK_RBUTTON N/A

03 VK_CANCEL Ctrl-Break
04 VK_MBUTTON N/A

08 VK_BACK Backspace
09 VK_TAB Tab

0C VK_CLEAR Numeric keypad 5 (Num Lock off)
0D VK_RETURN Enter

10 VK_SHIFT Shift

11 VK_CONTROL Ctrl

12 VK_MENU Alt

13 VK_PAUSE Pause

14 VK_CAPITAL Caps Lock
1B VK_ESCAPE Esc

20 VK_SPACE Spacebar
21 VK_PRIOR Page Up

22 VK_NEXT Page Down

Chapter XXI

Windows

Hex Symbolic Name Key

23 VK_END End

24 VK_HOME Home

25 VK_LEFT Left arrow

26 VK_UP Up arrow

27 VK_RIGHT Right arrow

28 VK_DOWN Down arrow

29 VK_SELECT N/A

2A VK_PRINT N/A

2B VK_EXECUTE N/A

2C VK_SNAPSHOT Print Screen

2D VK_INSERT Insert

2E VK_DELETE Delete

2F VK_HELP N/A

30-39 0 through 9 on main keyboard
41-5A A through Z

60 VK_NUMPADO Numeric keypad 0
61 VK_NUMPAD1 Numeric keypad 1
62 VK_NUMPAD2 Numeric keypad 2
63 VK_NUMPAD3 Numeric keypad 3
64 VK_NUMPAD4 Numeric keypad 4
65 VK_NUMPAD5 Numeric keypad 5
66 VK_NUMPAD6 Numeric keypad 6
67 VK_NUMPAD7 Numeric keypad 7
68 VK_NUMPADS Numeric keypad 8
69 VK_NUMPAD9 Numeric keypad 9
6A VK_MULTIPLY Numeric keypad *
6B VK_ADD Numeric keypad +
6C VK_SEPARATOR N/A

6D VK_SUBTRACT Numeric keypad —
6E VK_DECIMAL Numeric keypad
6F VK_DIVIDE Numeric keypad /
70 VK_F1 F1

71 VK_F2 F2

72 VK_F3 F3

73 VK_F4 F4

continues

399

400

C Programming: Just the FAQs

Table XXI.17. continued

Hex Symbolic Name Key

74 VK_F5 F5

75 VK_F6 F6

76 VK_F7 F7

77 VK_F8 F8

78 VK_F9 F9

79 VK_F10 F10

TA VK_F11 F11

7B VK_F12 F12

7C VK_F13 N/A

7D VK_F14 N/A

TE VK_F15 N/A

TF VK_F16 N/A

90 VK_NUMLOCK Num Lock
91 VK_SCROLL Scroll Lock

Many more virtual keys are available, but most of them depend on which international settings you have set
up for your Windows configuration.

Note that besides being able to obtain the keystroke from Windows, you can also obtain the state of the Shift,
Ctrl (Control), and Alt keys. You can do so by using the function cetkeystate(). For instance, the function
call

GetKeyState(VK_SHIFT);

returns a negative value if the Shift key is down (pressed). If the Shift key is not pressed, the return value is
positive.

Cross Reference:

XXI1.15: What are OEM key codes?
XX1.16: Should a Windows program care about the OEM key codes?
XX1.18: What is a dead key?

XX1.18: What is a dead key?
Answer:

A dead key is a keystroke that is not recognizable by Windows. On some international keyboards, it is
impossible to translate certain characters into keystrokes. In this case, Windows sends either a wu_DEADCHAR
Or a WM_SYSDEADCHAR message to your program, indicating that Windows cannot interpret the character code
of the incoming keystroke.

Chapter XX1 = Windows 401

You can, however, manually reference the actual ASCII character code of the incoming character. When your
program receives one of these two messages, you can inspect the value of the wearam parameter and determine
which key was pressed. You therefore can manually customize your programs for internationalization by
determining ahead of time which foreign characters your program needs to handle.

Cross Reference:

XX1.15: What are OEM key codes?
XX1.16: Should a Windows program care about the OEM key codes?
XX1.17: What are virtual key codes?

XXI1.19: What 1s the difference between the caret and
the cursor?

Answer:

In Windows, the cursor represents the mouse position on the screen. The caret represents the currentediting
position. If you look at the Windows program Notepad, for example, you'll notice that as you move the
mouse around, you see the familiar arrow move. This arrow is the cursor; it represents the current position
of the mouse.

If you type some text into the Notepad program, you’ll notice that the next available edit position in the
Notepad window has a blinking vertical bar in it. This is the caret; it represents the current editing position.
You can control the caret’s blink rate by invoking the Windows control panel.

In Windows programs, five functions are available to control the caret. These functions are listed in Table
XXI1.19.

Table XXI.19. Functions to control the caret.

Function Name Purpose

CreateCaret Creates a caret

SetCaretPos Sets the position of the caret
ShowCaret Shows the caret

HideCaret Hides the caret
DestroyCaret Destroys the caret

If you're a die-hard DOS programmer moving into Windows programming, you might think it odd that
the “cursor” position actually represents the mouse position and not the editing position. Thisisjust one little
caveat you must get used to when joining the ranks of Windows programmers who now have to refer to the
“cursor” position as the “caret” position.

402 C Programming: Just the FAQs

Cross Reference:

None.

XX1.20: Can a mouse click be captured in an area outside
your program’ client area?

Answer:

In Windows, the client area of your program includes all the space within the border of your window, with
the exception of the following areas:

[0 The title bar
[0 The scrollbars
(1 The pull-down menu

Can a mouse click be captured within any of these three regions? Yes. When the mouse is clicked in these
regions, Windows sends a “nonclient area” message to your program. Thisway, you can trap for these events
when they occur.

Trapping for these events is unusual, however. This is because Windows has prebuilt functionality to handle
mouse clicks in these regions. For instance, if you double-click on a window’s title bar, the window resizes
itself (maximized or restored). If you click on a scrollbar, the window scrolls. If you click on a pull-down
menu, the menu is shown on-screen. None of these events requires any code to be written—they are
automatically handled by Windows.

Most of the time, you will want to pass these messages to what is called the befwindowProc() function. The
DefWindowProc() calls the default window procedure (that is, it implements the window’s built-in
functionality). You very rarely would need to trap for a nonclient mouse hit. Nonetheless, Table XXI.20
presents some of the messages you can trap for.

Table XX1.20. Nonclient area mouse events.

Nonclient Message Meaning

WM_NCLBUTTONDOWN Nonclient left mouse button down
WM_NCMBUTTONDOWN Nonclient middle mouse button down
WM_NCRBUTTONDOWN Nonclient right mouse button down
WM_NCLBUTTONUP Nonclient left mouse button up
WM_NCMBUTTONUP Nonclient middle mouse button up
WM_NCRBUTTONUP Nonclient right mouse button up
WM_NCLBUTTONDBLCLK Nonclient left mouse button double-click
WM_NCMBUTTONDBLCLK Nonclient middle mouse button double-click

WM_NCRBUTTONDBLCLK Nonclient right mouse button double-click

Chapter XX1 = Windows 403

Cross Reference:

XX1.14: How do you determine a Windows program’s client area size?

XX1.21: How do you create an animated bitmap?
Answer:

Sometimes you will run across a Windows program that entertains you with an animated bitmap. How is
this task accomplished? One method is to set up a timer event that switches the bitmap every second or two,
thus making the bitmap “appear” to be animated. In fact, it is not animated, but rather several versions of
the same bitmap are switched fast enough to make it appear as though the bitmap is moving.

The first step is to insert the following code into your winmain() function:
SetTimer(hwnd, 1, 1000, NULL);

Thiscode sets up atimer event that will be invoked every 1000 clock ticks (1 second). In your event (message)
loop, you can then trap the timer event, as shown here:

switch(message)

{
case WM_TIMER:

/* trapped timer event; perform something here */

3
Now, when the wv_cREATE message comes through, you can load the original bitmap:

case WM_CREATE:

hBitmap = LoadBitmap(hlnstance, BMP_ButterflyWingsDown);

In this case, BMP_ButterflywingsDown is a bitmap resource bound to the executable through the use of a
resource editor. Every time a wv_TIMER event is triggered, the following code is performed:

case WM_TIMER:

if (bWingsUp)
hBitmap = LoadBitmap(hlnstance, BMP_ButterflyWingsDown);
else

hBitmap = LoadBitmap(hlnstance, BMP_ButterflyWingsuUp);

This way, by using the boolean flag bwingsup, you can determine whether the butterfly bitmap’s wings are
up or down. If they are up, you display the bitmap with the wings down. If they are down, you display the
bitmap with the wings up. This technique gives the illusion that the butterfly is flying.

Cross Reference:

None.

404 C Programming: Just the FAQs

XX1.22: How do you get the date and time ina
Windows program?
Answer:

To get the date and time in a Windows program, you should call the standard C library functions time()
and l1ocaltime() Or some derivative (asctime(), ctime(), _ftime(), gnttime()). These functions are
compatible with both DOS and Windows. You should never attempt to call a DOS-only or aROM BIOS
function directly. You should always use either Windows API function calls or standard C library routines.
Here is an example of code that can be used to print the current date and time in a Windows program:

char* szAmPm = “PM”;
char szCurrTime[128];
char szCurrDate[128];
struct tm* tmToday;

time_t ITime;
time(&ITime);

tmToday = localtime(ITime);

wsprintf(szCurrDate, “Current Date: %02d/%02d/%02d”,
tmToday->tm_month, tmToday->tm_mday,
tmToday->tm_year);

if (tmToday->tm_hour < 12)
strcpy(szAmPm, “AM™);

if (tmToday->tm_hour > 12)
tmToday->tm_hour -= 12;

wsprintf(szCurrTime, “Current Time: %02d:%02d:%02d %s”,
tmToday->tm_hour, tmToday->tm_min,
tmToday->tm_sec, szAmPm);

TextOut(50, 50, szCurrDate, strlen(szCurrDate));

TextOut(200, 50, szCurrTime, strlen(szCurrTime));

}

The time() and 1ocaltime() functions are used to get the current local time (according to the Windows
timer, which gets its time from MS-DOS). The time() function returns a time_t variable, and the
1ocaltime() function returnsatm structure. The tm structure can easily be used to put the current date and
time into a readable format. After this task is completed, the wsprintf() function is used to format the date
and time into two strings, szcurrbate and szcurrTime, Which are then printed in the current window via
the Textout() Windows API function call.

Cross Reference:

None.

Chapter XX1 = Windows 405

XX1.23: How do you update the title bar ina
Windows program?
Answer:

Thetitle bar (or caption bar, asit is often called) can be updated in a Windows program by using the Windows
API function setwindowText(). The setwindowText() function takes two parameters. The first parameter
is the handle to the window, and the second parameter is the new title you want to display on the window.

One reason you might want to take this action is to provide your users with the current date and time on
the title bar. This task can be accomplished with the following code:

char* szAmPm = “PM”;
char szNewCaption[200];
struct tm* tmToday ;

time_t ITime;
time(&ITime);

tmToday = localtime(ITime);

wsprintf(szNewCaption,
“My Application - %02d/%02d/%02d %02d :%02d :%02d %s”,
tmToday->tm_month, tmToday->tm_mday, tmToday->tm_year,

tmToday->tm_hour, tmToday->tm_min,
tmToday->tm_sec, szAmPm);

SetWindowText(hwnd, szNewCaption);

Of course, you probably will want to set up this code in some sort of timer event loop so that the title is
updated every second (or minute).

Cross Reference:

None.

XXI.24: How do you access the system colors ina
Windows program?
Answer:

You can obtain the system colors by calling the Windows API function cetsyscolor(). The GetSysColor()
function takes one parameter, which signifies which color element you want to obtain. The color elements
are represented by color constants defined in the windows.h header file. The Windows system color constants
are listed in the following FAQ (XXI.25).

For instance, to obtain the color for the window’s active border, you might make the following function call:

rgbColor = GetSysColor(COLOR_ACTIVEBORDER) ;

406

C Programming: Just the FAQs

The cetsyscolor() function returns an RGB value. The RGB value represents the intensity of the colors
red, green, and blue that are present in the returned color. An RGB value of 0 signifies black, and an RGB
value of 255 signifies white. You can extract the individual red, green, and blue values from the RGB value
by calling the Getrvalue(), GetGvalue(), and cetBvalue() Windows API functions.

The Windows API function setsyscolors() can be used to set system colors. Here is an example of some
code that sets the color of the active border to red:

int aiColorElements[1];
DWORD argbColor[1];

aiColorElements[0] = COLOR_ACTIVEBORDER;
argbColor[0] = RGB(OxFF, 0x00, 0x00);
SetSysColors(1, aiColorElements, argbColor);

The setsyscolors() function takes three arguments. The first argument is the number of elements to set
color for, the second is an array of integers holding the system color constants to set color for, and the third
isan array of RGB values that correspond to the colors you want to invoke for the elements represented by
the second argument.

Cross Reference:

XX1.25: What are the system color constants?

XX1.25: What are the system color constants?
Answer:

The system color constants are used by Windows to control the colors of various objects included in the
Windows environment. Table XX1.25 lists the system color constants (as defined in windows.h).

Table XXI.25. The system color constants.

Color Constant Target Object
COLOR_SCROLLBAR Scrollbar
COLOR_BACKGROUND Windows desktop
COLOR_ACTIVECAPTION Active title
COLOR_INACTIVECAPTION Inactive title
COLOR_MENU Menu bar
COLOR_WINDOW Window
COLOR_WINDOWFRAME Window frame
COLOR_MENUTEXT Menu text

COLOR_WINDOWTEXT Window text

Color Constant

Chapter XXI

Target Object

e Windows 407

COLOR_CAPTIONTEXT
COLOR_ACTIVEBORDER
COLOR_INACT IVEBORDER
COLOR_APPWORKSPACE
COLOR_HIGHLIGHT
COLOR_HIGHLIGHTTEXT
COLOR_BTNFACE
COLOR_BTNSHADOW
COLOR_GRAYTEXT
COLOR_BTNTEXT

Title text

Active border

Inactive border
Application workspace
Highlight

Highlight text

Button face

Button shadow
Grayed-out text
Button text

You can change the system colors from within your Windows programs by calling the cetsyscolor() and
setsysColor() functions. You can also set these colors by altering the [colors] section of your WIN.INI
(Windows initialization) file, or you can interactively set them by using the Windows control panel.

Cross Reference:

XX1.24: How do you access the system colors in a Windows program?

XX1.26: How do you create your own buttons or controls?

Answer:

Controls such as buttons are typically created with a resource editor. With a resource editor, you can
interactively design your windows and place pushbuttons, check boxes, radio buttons, and other controls in
your window. You can then access them from within your Windows program by referring to each resource’s
unique resource id (which you define).

This is not the only way, however, to create controls such as buttons. Buttons and other controls are called
“child window controls.” Each child window control has the capability to trap incoming messages (such as
the wv_commanp message) and pass them on to the parent window control. A child window control such as
apushbutton can be created by using the Windows API function createwindow(). It might seem odd to call
the function createwindow() to create a pushbutton, but a control is, in effect, its own “virtual” window,
and thus it needs to have its own handle. Here is some sample code that shows how this task is performed:

switch (message)

{

case WM_CREATE:

408 C Programming: Just the FAQs

hwndCloseButton =
CreateWindow(“button”, /* Windows registered class name */

“Close”, /* Window text (title) */
WS_CHILD | WS_VISIBLE | PUSHBUTTON, /* Style */
50, /* Horizontal position */
50, /* Vertical position */
100, /* Width */
100, /* Height */
hwndParent, /* Handle of parent window */
0 /* Child-window identifier */

((LPCREATESTRUCT) IParam)->hlnstance,
NULL); /* Window creation options */

}

Cross Reference:

None.

XXI1.27: What is a static child window?
Answer:

A static child window is a window control that does not accept mouse or keyboard input. Typical examples
of static child windows are rectangles, frames, a window’s background or border, and static text (labels) that
appear on-screen. Typically, it makes no sense to process mouse or keyboard events when dealing with static
controls.

A static control can be created by specifying the “static” class in the Windows API createwindow() function
call. Here is an example of a field label that is created by invoking the createwindow() function:
hwndNameLabel = CreateWindow (“static”, “Customer Name:",

WS_CHILD | WS_VISIBLE | SS_LEFT,

0, 0, 0, O,

hwnd,

50,

hinstance, NULL) ;

Thisexample creates a field label in the window with the caption “Customer Name:.” This field label would
probably coincide with a window of the edit class that would accept the user’s input of the customer’s name.

Cross Reference:

XX1.28: What is window subclassing?

Chapter XX1 = Windows 409

XX1.28: What is window subclassing?
Answer:

Windows subclassing refers to a technique whereby you can “tap” into a built-in Windows function and add
your own functionality without disturbing or abandoning the original Windows functionality. For example,
the Windows procedure for a check box control is coded deep within the system internals of Windows, and
the source code is not readily available. However, through the use of two Windows API functions, you can
tap into this code and build your own functionality into it.

The two Windows API functions that accomplish this task are called GetwindowLong() and setwindowLong().
The cetwindowLong() function returns the address of the Windows procedure you want to subclass. The
setWindowLong() function can be used to override the default Windows procedure and point to your own
custom-made version. Note that you do not have to replicate all functionality by doing this—when you need
to reference the original procedure’s functionality, you can pass the messages through to it.

You can save the old procedure’s address by including the following code in your program:
IpfnOldCheckBoxProc = (FARPROC) GetWindowLong(hwndCheckBox, GWL_WNDPROC) ;

Your new custom check box procedure can replace the old procedure by including the following code in your
program:

SetWindowLong(hwndCheckBox, GWL_WNDPROC, (LONG) IpfnCustomCheckBoxProc);

In thisexample, the cetwindowLong () function is used to save the old procedure’s address. The GwL_wNDPROC
identifier tells the cetwindowLong () function to return a pointer to the check box’s procedure. After this is
saved, a new procedure (named IpfncustomCheckBoxProc) is invoked by a call to the setwindowLong()
function. Now, whenever Windows would normally call hwndcheckBox’s default procedure, your custom
check box procedure will be called instead.

In your custom check box procedure, you can always pass messages through to the original procedure. This
is done by using the Windows API function caliwindowProc() as shown here:

Cal IWindowProc(lpfnOldCheckBoxProc, hwnd, message, wParam, IParam);

This way, you do not have to replicate all functionality that was in the original procedure. Instead, you can
trap for only the messages you want to customize. For instance, if you have ever seen a variation of a check
box (such as Borland’s custom check box), you know that it does not look like the default check box you
would normally see in Windows programs. This variation is accomplished through Windows subclassing.
The wm_PAINT message is simply subclassed out, and a new customized version of the check box rather than
the original version is painted.

Cross Reference:

XX1.27: What is a static child window?

410 C Programming: Just the FAQs

XX1.29: What Is the edit class?
Answer:

Windows contains many classes of windows that can be created by using the createwindow() function. One
of these classes is the edit class, which creates a rectangular region in the window that is editable. When this
editable region receives the focus, you can edit the text in any way you want—select it; cut, copy, or paste
it to the clipboard; or delete it.

A window created with the edit class is called an edit control. Edit controls can be single-line or multiline.
Here is an example of a portion of code that creates a multiline scrollable edit control in a window:

switch (message)

{
case WM_CREATE:
hwndEdit = CreateWindow (“edit”,

NULL,
WS_CHILD | WS_VISIBLE |
WS_HSCROLL | WS_VSCROLL |
WS_BORDER | ES_LEFT | ES_MULTILINE |
ES_AUTOHSCROLL | ES_AUTOVSCROLL,
o0, 0, 0, O,
hwnd, 1,
((LPCREATESTRUCT) IParam) -> hlnstance,
NULL) ;

¥

Theedit class is very powerful. It hasa lot of built-in functionality that does not need to be programmed into
it. For instance, all the clipboard commands (cut, copy, paste, delete) are automatically active when focus
is switched to an edit control. You do not need to write any code for this functionality to be included.

As you can see from the preceding example, an edit control has many options that can make it totally
customizable to your needs. An edit control also carries with it several associated events (messages) that you
can trap for. Table XX1.29 lists these events.

Table XX1.29. Events associated with an edit control.

Message Meaning

EN_SETFOCUS Received input focus
EN_KILLFOCUS Lost input focus

EN_CHANGE Contents are about to change
EN_UPDATE Contents have changed

EN_HSCROLL Horizontal scrollbar clicked

Chapter XXI + Windows

Message Meaning

EN_VSCROLL Vertical scrollbar clicked
EN_ERRSPACE No space left in buffer
EN_MAXTEXT No space left while in insert mode

Cross Reference:
XX1.30: What is the listbox class?

XXI.30: What is the listbox class?
Answer:

One of the predefined classes available when you are calling the createwindow() function is the listbox class.
This class provides a vertically scrollable list of items enclosed in a rectangular region. This list of items can
be modified—you can add items toand delete items from the list at runtime. A listbox control can be asingle-
selection listbox (only one item at a time can be selected) or a multiselection listbox (more than one item at
a time can be selected).

As with the edit class, the listbox class comes with a tremendous amount of predefined functionality. You
do not need to program in many of the listbox class’s functions. For instance, in a single-selection listbox,
you can move the arrow keys up and down, and the selection changes with the movement. If the listbox is
scrollable, the list automatically scrolls. The Page Up and Page Down keys scroll the listbox region one page
up or down. You can even perform an “auto-search” within the listbox: when you press a letter on the
keyboard, the listbox “jumps” to the first item that begins with that letter. When you press the spacebar, the
current item is selected. The multiselectable listbox control has all of this functionality and more. Plus, each
of these listbox styles is automatically mouse-enabled.

You can create a new listbox control in a window by using the createwindow() function like this:

switch (message)

{

case WM_CREATE :

hwndList = CreateWindow (“listbox’, NULL,
WS_CHILD | WS_VISIBLE | LBS_STANDARD,
100,
200 + GetSystemMetrics (SM_CXVSCROLL),
200,
hwnd, 1,
GetWindowWord (hwnd, GWW_HINSTANCE),
NULL) ;

411

412

C Programming: Just the FAQs

Like the edit class, the listbox class comes with many associated attributes and events (messages). Table
XX1.30 presents some messages available for the listbox class.

Table XXI.30. Some of the available messages for the listhox class.

Message Meaning

LBN_SETFOCUS The listbox received input focus

LBN_KILLFOCUS The listbox lost input focus

LBN_SELCHANGE The current selection has changed

LBN_DBLCLK The user double-clicked the mouse on a selection
LBN_SELCANCEL The user deselected an item

LBN_ERRSPACE The listbox control has run out of space

Cross Reference:

XX1.29: What is the edit class?

XX1.31: How is memory organized in Windows?
Answer:

Windows organizes its memory into two “heaps”: the local heap and the global heap. The local heap is much
like the local heap of a DOS program. It contains room for static data, some stack space, and any free memory
up to 64K. You can access memory in this area in the same manner as you would access a DOS program’s
memory (by using the malloc(or calloc() functions).

The global heap, however, is totally different from anything available under DOS. The global heap is
controlled by Windows, and you cannot use standard C function calls to allocate memory from the global
heap. Instead, you must use Windows API function calls to allocate global memory. Global memory
segments can be classified as either fixed or movable. A fixed segment in the global heap cannot be moved
in memory. Its address remains the same throughout the life of the program. On the other hand, a movable
segment in the global heap can be “moved” to another location in memory to make more contiguous room
for global allocation. Windows issmart enough to move memory when it needs to allocate more for Windows
programs. This action is roughly equivalent to an “automatic” reatloc() function call.

Generally, you should make every effort to ensure that the code and data segments of your Windows
programs are marked as movable. You should do so because movable segments can be handled at runtime
by Windows. Fixed segments, on the other hand, always reside in memory, and Windows can never reclaim
this space. Heavy use of fixed segments might make Windows perform acrobatic “disk thrashing” with your
hard drive, because Windows attempts to shuffle things in memory to make more room.

Chapter XX1 = Windows 413

Using movable segments allows Windows to have more control at runtime, and your programs will generally
be better liked by your users. Movable segments can also be marked as discardable. This means that when
Windows needs additional memory space, it can free up the area occupied by the segment. Windows uses
a “least recently used” (LRU) algorithm to determine which segments to discard when attempting to free up
memory. Code, data, and resources can be discarded and later read back in from your program’s .EXE file.

Cross Reference:

XX1.32: How is memory allocated in a Windows program?

XX1.32: How is memory allocated in a Windows program?
Answer:

FAQ XXI.31 explained how memory was organized under Windows. For allocating memory from the local
heap, typical C functions such as mal1oc() or calloc() can be used. However, to allocate memory from the
global heap, you must use one of the Windows API functions, such as GlobalAlloc(). The GlobalAlloc()
function allocates memory from the global heap and marks it as fixed, movable, or discardable (see FAQ
XX1.31 for an explanation of these three terms).

Here is an example of a Windows program code snippet that allocates 32K of global memory:

GLOBALHANDLE hGlobalBlock;
LPSTR IpGlobalBlock;

hGlobalBlock = GlobalAlloc(GMEM_MOVEABLE | GMEM_ZEROINIT, 0x8000L);
. /* various program statements */

IpGlobalBlock = GlobalLock(hGlobalBlock);
. /* various program statements */

GlobalUnlock(hGlobalBlock);

. /* various program statements */

GlobalFree(hGlobalBlock);

Take a look at how the preceding portion of code works. First, two variables are declared. The first variable
iShGlobalBlock, Which is of type cLoBALHANDLE. Thisissimply defined as a 16-bit integer to hold the handle
of the block returned by Windows. Notice that, unlike DOS, Windows returns a handle to an allocated
portion of memory. It does so because portions of memory can be moved or discarded, thus invalidating
pointer usage. If you use pointersinyour program, you can’t be sure that Windows has not moved the portion
of memory you were working with—that is, unless you call the clobalLock() function (which is explained
in the next paragraph).

Thefirstfunction call, clobalAlloc(), isused toallocate a 32K portion of global heap memory that is flagged
as movable and is automatically zero-initialized. After calling this function, hGlobalslock Will contain a
handle to this portion of memory. Using this handle, you can reference the memory as much as you want
inyour program. It makes no difference toyou if the memory ismoved by Windows—the handle will remain

414

C Programming: Just the FAQs

the same. However, if you need to work with a pointer to this memory rather than a handle (for accessing
memory directly), you need to call the clobalLock() function. This function is used to “lock” (that is, mark
asnonmovable) the portion of memory that you have allocated. When memory is locked like this, Windows
will not move the memory, and thus the pointer returned from the GlobalLock() function will remain valid
until you explicitly unlock the memory by using the clobaluntock() function.

When you are finished working with the allocated global heap memory, you can free it up and return itsspace
to Windows by calling the clobalFree() Windows API function.

Cross Reference:

XX1.31: How is memory organized in Windows?

XX1.33: What is the difference between modal and modeless
dialog boxes?

Answer:

Windows dialog boxes can be either “modal” or “modeless.” When your program displays a modal dialog
box, the user cannot switch between the dialog box and another window in your program. The user must
explicitly end the dialog box, usually by clicking a pushbutton marked OK or Cancel. The user can, however,
generally switch to another program while the dialog box is still displayed. Some dialog boxes (called “system
modal”) do not allow even this movement. System modal dialog boxes must be ended before the user does
anything else in Windows. A common use of modal dialog boxes is to create an “About” box that displays
information regarding your program.

Modeless dialog boxes enable the user to switch between the dialog box and the window that created it as
well as between the dialog box and other programs. Modeless dialog boxes are preferred when the user would
find it convenient to keep the dialog box displayed awhile. Many word processing programs such as Microsoft
Word use modeless dialog boxes for utilities such as the spell checker—the dialog box remains displayed on-
screen, enabling you to make changes to your text and return immediately to your spell checker.

Modeless dialog boxes are created by using the createbialog() function:

hdIgModeless = CreateDialog(hlnstance, IpszTemplate,
hwndParent, IpfnDialogProc) ;

The createbialog() function returnsimmediately with the window handle of the dialog box. Modal dialog
boxes are created by using the pialogBox() function:

DialogBox(hlnstance, “About My Application”, hwnd, IpfnAboutProc);

The pialogBox() function returns when the user closes the dialog box.

Cross Reference:

None.

